
Cavalier Robotics — Camera-Limited Autonomous
Race Car
*Author of correspondence

*Andrew Mourcos
Cavalier Robotics Leader

ESC Père-René-de-Galinée
Cambridge, Canada

amourcos@gmail.com

Abstract—This paper describes the design and construction of
an autonomous race-car. The mechanical design, starting from an
R/C chassis, was modified and fitted to include required
components. It has an interchangeable computer vision system
which can utilize either a smartphone OR a microprocessor to
compute the data obtained from a single front-facing camera. All
software used is open-source. The simplicity and modularity of
the project means that it can promote further interest for
younger students in the domain of robotics and computer vision.

Keywords—Open Source, Autonomous, Self-Driving Race Car,
Android, Computer Vision, NDK, IARRC, OpenCV, Reverse
Perspective, Arduino, PCB.

I. INTRODUCTION
The potential of autonomous technology is ever-growing in

this 21st century. As a result, our contribution to this field will
be to make it accessible to kids our age to promote further
interest. The future of autonomy lies in the future of humanity:

our youth. Following this goal, our car must be simple and
cheap to build.

This document is the final report of the Cavalier Robotic's
project to build a self-driving race car that will participate in

the 2018 International Autonomous Robot Racing Challenge
(IARRC) at the University of Waterloo.

We appropriately named our car The Kinematic

Autonomous Car Having Obvious Worth, or K.A.C.H.O.W for
short, referencing a catchphrase from the 2006 film, Cars.

The purpose of this competition is to promote further
research into vehicle autonomy. The car in question was

created to participate in 3 main events — design, circuit race
and drag-race — while adhering to the main objectives listed

1) High speed vehicle localization;

2) High speed vehicle control on different surfaces;

3) Stop light and roadway detection;
4) Collision avoidance with static and dynamic obstacles.

This report presents a detailed outline of the entire project,
explaining the mechanical design, electrical layout and
software aspects of the car.

II. MECHANICAL DESIGN

A. Chassis
The starting point for the car is a 1/10th scale DHK

HUNTER hobby r/c chassis to which certain modifications
were made. Firstly, the Electronic Speed Controller (ESC), and
the DC motor were replaced with a stronger brushless motor

system. Secondly, using a piece of iron, a n-shaped structure
(see figure 1) was bent by hand. This structure was secured to
the spine of the car. It works as an elevation point to (1) hold
the camera for the computer vision, (2) house the emergency

stop button, (3) protect the on-board electronics in the event of
a roll and (4) act as a handle in case the car needs to be caught.

Cavalier Robotics — International Autonomous Robot Racing Challenge 2018 (IARRC)

Sophia Mourcos
Cavalier Robotics Member
ESC Père-René-de-Galinée

Cambridge, Canada

Jacob Hergott
Cavalier Robotics Member
ESC Père-René-de-Galinée

Cambridge, Canada

Joel Zhang
Cavalier Robotics Member
ESC Père-René-de-Galinée

Cambridge, Canada

Levi Kusaula
Cavalier Robotics Member
ESC Père-René-de-Galinée

Cambridge, Canada

Figure 1 — the chassis

mailto:amourcos@gmail.com

Thirdly, the shocks of the car were replaced with thicker

springs to account for the added weight of the electronics.

This chassis has many structural advantages:

- Large base allows for enhanced stability;

- Flat chassis makes mounting components easy and
increases usable surface area;

- Adjustable shocks allow for easy changes in case of
variations in car weight;

- Front and rear bumpers for shock absorption upon
accidental collision with pylons;

- Velocity of up to 35km/h;

- Four-wheel drive to avoid slippage (high speed
vehicle control on various surfaces);

- Modularity — even though the car is complete, it
allows for several future additions.

Next, a smartphone holder was secured onto the iron ‘n’, which
will be used for the autonomy. Additionally, several aesthetic
modifications were made to make the car resemble Lightning

McQueen (a fictional movie character). In fact, a shell for the
car was made using paper-mâché and painted to conform to the
character’s design (see figure 2).

III. HARDWARE

A. Processing

Prioritizing accessibility of materials, we used a readily-
available smartphone device as our main processing unit. It is

propped up on a support that angles the camera towards the

road.

The specific model is a Samsung Galaxy S5 which
encompasses a suite of features and sensors:

• 2GB of RAM;

• 2.5GHz quad-core Snapdragon processor;

• 16MP camera;

• Bluetooth 4.0;

• Accelerometer, Gyroscope, Proximity and Compass
sensors (for inertial measurement);

• Ambient light sensor (for autofocus).

 A phone was also used instead of a conventional processor
since it provided the features mentioned above, thus removing
the need to have an Inertial Measurement Unit (IMU) and a
camera system separately.

 An android application monitors the road and the inertial
sensor readings (for vehicle localization), then decides what
course of action to take. The final decision is sent over

bluetooth via a HC-04 module to a microcontroller (MCU).
The specific MCU used is an Arduino because of it's
commercial availability. It uses an ATmega328P chip with
32KB of flash memory. The MCU in turn, is connected to the

car's servo motor for steering, the ESC for throttle control and
a radio receiver. The radio receiver listens for a stop command
issued when someone pulls the trigger on the wireless

emergency stop.

C. Circuit

 As part of the design, our team created a printed circuit

board (PCB) to connect all individual components (bluetooth,
radio, servo & ESC) to the Arduino in an organized manner.
The circuit in question was designed to be a “shield" for the

Figure 2 — K.A.C.H.O.W with decorative shell

Figure 3 — CAD model of PCB

Arduino (see figure 4), meaning that it has header pins that

slide directly on top of the Arduino, like a hat. The first
rendition of the design was created using EagleCAD, but was
later remade using Fritzing (see figure 3). The design was

printed on glossy paper, then ironed onto a single-sided copper
board. As an experiment, two boards were dipped in two
different solutions.

The first experimental solution was made with common

household chemicals: hydrogen peroxide (H2O2) and diluted
acetic acid (CH3COOH, also known as vinegar). For our
theory, we came up with the chemical equation:

2CH3COOH + H2O2 + Cu → 2CH3COO- + Cu2+ + 2H2O

(1)

Note that in (1), there is a formation of copper ions and we
noticed that the reaction would not last long enough to finalize

the etching. This was probably due to the copper ions
saturating the reaction. We were able to bypass this problem by
adding table salt (NaCl) periodically, which dissociated into it’s
ions Na+ and Cl-, which bonded with the loose copper ions.

According to Le Chatelier’s Principle, this pushed the
equilibrium point forward, allowing the reaction to continue.
This method was surprisingly functional and managed to etch

the board to an extent. After several hours in the solution, we
concluded that it works, but was not worth the wait, so we
passed to the next solution.

The second solution was Ferric Chloride-based, which is a

much more conventional acid for circuit etching. This time, the
process took less than 40 minutes.

D. Power

In order to have a reliable system, we need reliable power.
Firstly, the smartphone relies on it's internal battery which
should last several hours in the created application with

2800mAh. Next, the Arduino and it's peripherals are powered
via USB connection to an 8000mAh power bank. Finally, the
servo motor has it’s own separate battery pack.

IV. SOFTWARE

 The app that runs on the phone is made superficially in
Java, but was set up to use Android’s native development tool
(NDK). This allowed us to use native code — C++ — for the

the backend and simply communicate to the frontend using
JNI. As this was our first venture in app development, Java and
C++ for computer vision, it proved to be a big challenge to
develop.

 To have an efficient algorithm, we implemented certain
functions from the OpenCV library for C++ into our app.

A. Traffic light detection

To detect the traffic light state, we use the camera feed from
the smartphone. From the frames obtained, we convert the
image to a hue-saturation-value (HSV) format. This allows us
to easily select a colour range for the red traffic light. Next, we

apply a mask that deletes everything in the image that doesn’t
comply with the HSV colour range defined for the red traffic
light. Then, we use simple blob detection to find the light in the

mask. The method used was a variation of Laplacian of
Gaussian (LoG). Blobs were then filtered by area and
circularity. Then, once a blob-counting function detects zero
blobs, it means the red traffic light turned off and the race has

begun. This signals to our main program to begin the redline
detection.

B. Road line detection

From the camera feed of the smartphone, we extract road
lines in several steps, the first being converting the input video
to a matrix of grayscale pixel values.

1) A region of interest is selected, thereby cropping out

unnecessary pixels.

Figure 4 — Final PCB shield

2) A blurring function is applied. While a Gaussian blur is

preferable, a different method was required to economize
processing capabilities (see figure 5).

3) Canny edge detection — finding intensity gradients,

applying non-maximum suppression, applying double
threshold, suppressing all insignificant edges (see figure 6).

Then, we used a Hough Line Transform in order to detect

the road lines (see figure 7).

It uses Hesse normal form to describe equations of lines:

ρ = xcosθ +ysinθ .

Where ρ is the distance from the origin to the closest point

on the line and θ is the angle made by ρ and the x-axis. This

means that we can represent a line in this form using 2

parameters (ρ, θ). We then create an array/accumulator of these

parameters and using a system of “votes”, we determine the
rho and theta describing the best road line.

After converting the (ρ, θ) coordinates to (x, y) pairs, the

lines’ slopes can easily be extrapolated with the following
equation:

For a mono-camera setup, two perfectly straight lines in a
picture seem to be angled due to a camera’s single-point
perspective. Using this knowledge, the program can determine
that a line is the right road line if it has a negative slope or that

it is a left road line if it has a positive slope (see figure 8).

Now, to establish a course of action, the program needs to

know what the lines look like in real life, not what they look
like in this single-perspective. This requires a “perspective
reversal algorithm”. Our program uses the Ilyas method, which

is described in our last report for IARRC-2017 (see works
cited).

Summary of the method: the program feeds a pair of (x, y)
coordinates, representing a pixel on one of the lines, into a 2-

dimensional function that triangulates it's position in the real-
world. It returns an (x, y) pair describing a “bird’s eye view” of

m =
y2 − y1
x2 − x1

Figure 5 — Image after blur filter

Figure 6— Image after edge detection

Figure 7 — Hough line detection (blue is left
line, green is right line)

Figure 8 — Right line has negative slope, left line
has positive slope

the road line. This is a model representing the function in the Y

direction

This is a model representing the function in the X direction:

If every pixel in the image has its perspective transformed

(which is highly inefficient, this is only for example purposes),
it would look like the following:

After feeding two points from each line into the function,

we are given two points in real life with which we can
calculate their slopes. Using the arctangent on the slope will
give us the angle of the road in reference to the car’s direction.

This value is then sent to the MCU over serial bluetooth
connection.

C. Obstacle avoidance

The last two objectives for the IARRC is obstacle
avoidance with static objects and other vehicles. To solve this
challenge, we positioned 2 ultrasonic sensors (HC-SR04) on

the front of our car. They each have a measuring angle of 15
degrees and can measure up to 4m ahead. These distance
sensors send out “pings” that travel through the air until they
hit an object and rebound back towards the sensor. Counting

the time it takes for the “ping” to go and come back, we divide
that time by 2 and use the following equation to determine how
far away an obstacle is:

d = v*t
Where d is the distance, v is the speed of the

“ping” (~344m/s) and t is the time it took.

We use the distance measurement to stop the car in the case
of a frontal collision.

D. Microcontroller

The MCU, runs a C/C++ program. It waits for data to be

obtained via serial communication with the radio device and
the bluetooth module. The program parses the incoming bytes
into 2 containers: motor speed and servo direction.

After receiving a coded message from the radio or a
distance measurement from the ultrasonic sensors, it knows
that it will either have to set the ESC to brakes or allow it to
continue. Also, after receiving the value for the angle of the

road line, it will set the servo motor to that angle to stay
parallel with the road.

V. CONCLUSION

The mechanics of the car are simple, yet reliable and
sturdy. The hardware used is inexpensive, however is capable
of supporting our use and promotes accessibility amongst

fellow high school students. The mechanical system has
excelled in our crash tests, speed tests and emergency stop
tests. The electronics have proven to be quite useful, especially
with the design of the PCB, which keeps all components

reliably organized. Finally, the software is unique in the sense
that it is mobile, however it has certain drawbacks. Certain
tradeoffs were made in order to have a functional system,

Figure 9 — Triangulation model for y-distance of
a point in front of camera

Figure 10 — Triangulation model for X-distance
of a point in front of camera

Figure 11 — Reversing the single-point
perspective of a camera using the Ilyas method

however performance could easily be increased with the use of

a newer smartphone, or with a different micro computing
device such as a raspberry pi. We currently have a raspberry pi
on standby with android installed. If we see a major difference

in performance between our app on a phone and the same app
on the raspberry pi, certain modifications may be made.

In the creation of this car, our whole team benefitted from
several engineering learning experiences. We definitely got to

challenge ourselves in many ways by trying things for the first
time. In fact, none of us have ever made mobile apps before,
it’s the first time we have programmed using Java or C++ for

NDK, we learned how to design PCBs, etc.

Overall, our system is big step forward from last year and
has brought us an array of new skills.

VI. APPENDIX

ACKNOWLEDGMENTS

We would like to thank the other members of Cavalier Robotics who
worked on a different project with us: Gabriel Quintana, Guillaume

Fernandes, Jacob Chaussé, Jennifer Rhett, Jonah Schuck, Lyne Baaj,

Gabriella Kik, Pavly Fayek, Renée-Tipler Corpuz. Additionally, we

would like to thank the IARRC team for creating such an event.

REFERENCES

1. Mourcos, Andrew et al. Cavalier Robotics: Simply Autonomous Driving.

report. June 2017

Table I : Cavalier Robotics Team Members for IARRC

Member Name Role

Andrew Mourcos Project lead & software lead

Jacob Hergott Mechanical lead

Joel Zhang Electronics lead

Sophia Mourcos Design lead

Levi Kusaula Research lead

Table II : Budget

Item Real cost Cost to
team

Samsung Galaxy S5 $200 Personal donation

Arduino $30 Personal donation

1/10th scale Hunter DHK + upgrades $300 300

Bluetooth module $5 Personal donation

Copper board + Acid $30 30

Phone holder $5 Personal donation

Raw materials $10 School donation

Total: $580 $330

