
Design and implementation report for IARRC 2018
- Team Selfie

Mateusz Perciński, Mikołaj Marcinkiewicz, Mateusz Grudzień, Mateusz Mróz, Kornelia Łukojć, Mateusz
Marczuk, Maciej Krasa, Krzysztof Gawin, Łukasz Jakubowski, Michał Jarzyński

Students’ Robotics Association, Faculty of Power and Aeronautical Engineering
Warsaw University of Technology

Warsaw, Poland
Contact e-mail: mateusz.percinski@gmail.com

Abstract—This report presents the design and implementation
system of autonomous car built to compete in International Au-
tonomous Robot Racing Competition 2018. It describes selected
components of platform and hardware, provides overview of
system architecture and prepared software. The implemented
methods are profiled to maximize performance of vehicle in
competition events. Computer vision system is designed to enable
high-speed localization on race lane and minimize computing
load and latency in output data delivery. Image processing
algorithms were selected to handle unstable outdoor environment.
Localization data processed collectively with obstacle detection
inputs enable optimal car trajectory planning. High-speed control
is realized by application implemented in real-time operating
system. It is running precise PID controllers of speed and
steering angle. The report emphasizes how safety engineering
and monitoring best practices were implemented.

I. INTRODUCTION

The main purpose of this paper is to introduce the ar-
chitecture of the system of small scale autonomous car -
requirements-based design approach and implementation of
ready-to-go system.

As market admittance of automated vehicles is coming
closer and closer, questions regarding safety and system val-
idation of algorithm are getting more and more important.
Many approaches need to be tested properly in non-impacting
environment. Challenges concern marking detection [1], ob-
stacles avoiding with sensors [3], task handling reliability
[2]. Technologies used in autonomous cars are very likely to
become breakthroughs in other fields [4].

Small scale vehicles are low-cost platforms that allows test-
ing most of aspects of localization and navigation algorithms
for real scale autonomous cars. Students competitions like
IARRC provide a space for testing ideas, competing and know-
how sharing for students team.

II. PLATFORM DESIGN

To comply with competition regulations vehicle is based
on 1:8 chassis of RC car. Default mechanism connecting
servo and wheels of front axle realizes Ackermann steering

Research done cooperating with the Faculty of Power and Aeronautical
Engineering, Warsaw University of Technology within the framework of
Najlepsi z Najlepszych 2.0!" program.

(a) Model prepared with CAD software

(b) Final appearance of built car without bodywork

Figure 1. Vehicle built for International Autonomous Robot Racing Compe-
tition 2018

geometry. Developing and testing on small scale chassis with
one working axle enable scalability of system for possible
future reimplementation in bigger-scaled projects. Most of the
mounting elements and electronics grippers are printed in 3D
technology. Some critical elements were prepared manually
by team members from metal, carbon fibre (camera stick) or

rubber (front and rear bumpers). Figure 1 presents design of
vehicle: 3D model (Figure 1a) and assembled ready-to-go car
without bodywork (Figure 1b).

Particular model of purchased chassis Kit is RC8B3.le
by company called Associated Team. The biggest advantage
of this construction is small turning circle and hydraulic
suspension system (it is operating smoothly with or without
significant additional load). For steering angle control precise
servomotor by Sevox was used. For this choice winning factors
were high operating speed and full set of metal gears, which
is not a common setup in this class standard servomotors,
was used. Powerful motor Reedy Sonic with complying ESC
(Electronic Speed Controller) was chosen. As it it brushless
motor, not only it is able to easily achieve high speeds, but
also operate smoothly in low rotational speeds.

Detailed information about models and costs of all compo-
nent are provided in appendix A (Table I).

Dimensions of car after all modifications are:
• height: 370mm
• width: 320mm
• length: 650mm

III. HARDWARE DESIGN

A. Hardware architecture

Figure 2. Map of communication between system elements

From high-level perspective Vehicle system is divided into
2 main processing subsystems and other peripherals. Figure 2
presents connections schema and points peripherals used for
handling communication between main controller particular
system elements.

B. Computer Vision System

After initial testing and building proof of concept two
crucial design decisions were made. First observation was that
minicomputers like RaspberryPi and Odroid were insufficient
(in terms of computing power) for ongoing image processing
and trajectory planning. That is why custom computer unit
was assembled. It is based on PC equipment.

Second observation was that the crucial factor for high
speed localization and control is number of frames per second
captured by camera. Even with high-speed camera this value

strongly depends on lighting in testing environment and cam-
era parameters setup. Several models of cameras have been
tested. Particular models of cameras and lenses was chosen as
a compromise between angle of view and level of distortion.

Computer vision equipment:
1) Computer Unit:

• Motherboard ASRock H110M-ITX
• Processor Intel Core i3-7100T, 3.4GHz, 3MB
• Memory: GoodRam DDR4, 4GB, 2.4GHz, CL12 +

SSD Silicon Power A55 64GB
2) Camera:

• Camera Kurokesu C1 - Resolution: 1920x1080,
Max fps: 30,

• Lens - focal length: 2.8 –12 mm, Angle of view: 93
degrees

3) OR
• Camera IDS UI-1220LE - Resolution: 752 x 480,

Max fps: 87.2 fps, 0.36 MPix, 1/3"
• Lens - Topacc, focal length: 2,1 mm

(a) camera IDS (b) Camera Kurokesu (c) Lens

Figure 3. Camera equipment used in project

C. Controller

As main controller AnyFCF7 board is utilized. It is equipped
with 32-bit micro-controller STM32F745 (processor ARM R©
Cortex-M7 R©, 216Mhz). AnyFC board was chosen because of
its small size, relatively low price and ready-to-use connectors.
Also built-in gyroscope is used. Figure 4 presents photo of
AnyFC F7 controller.

Figure 4. Controller AnyFC F7

D. Overall sensor setup

Goal of project was to minimize number of sensors used
maintaining full vehicle ability to perform in competition
events.

The camera in charge of road lane perception is mounted
in the highest point of car.

Planar lidar sensor and laser distance sensor were provi-
sioned for obstacle detection and high speed braking in drag
race.

Magnetic encoder is mounted directly on BLDC motor. It
enables actual speed measurement and feeds speed controller.

Additional equipment is gyroscope (anyFC built-in IMU is
used). It is used for diagnostics and securing straight ride in
drag race (additional guard on vision system)

Overall sensor setup is presented in figure 5.

Figure 5. Placement of sensors used in vehicle

E. Human-Machine Interfaces

(a) Portable remote stream viewer (b) FrSky Taranis - remote controller

Figure 6. Human - Vehicle interfaces used in project

Vehicle communicates with outside world through 3 chan-
nels.

2,4GHz Remote Control
It gives possibility to take over control remotely or
just invoke emergency stop. All the communication
is transmitted in radio-frequency of 2,4GHz to re-
ceiver mounted on car. It is communicating with
control unit (AnyFC) using SBUS protocol. Figure
6a presents radio remote controller utilized in this
project.

Bluetooth
Bluetooth communication is designed to enable

global variables (battery voltage, driven distance)
monitoring and controller terms setting.

Wifi streaming
Camera captured frames are streamed for testing
and presentation purposes. Streaming is not typically
used as it is big-size load for computer vision compu-
tation unit. For comfortable outdoor testing portable
RaspberryPi-based computer was assembled. Figure
6a presents stream viewer device - wired and ready
to be closed in 3D-printed box.

IV. SOFTWARE ARCHITECTURE

The main assumption on software design was clear role sep-
aration between Computer Vision Processing Unit and anyFC
board as main controller and communication manager. All the
software running on computer and controller is developed in
C++ language.

A. Computer

The computer unit is custom PC with Linux Ubuntu system
installed. Four programs are prepared to run on computer.
First one is capturing camera frames, process them and write
coordinate of points lying on lines (edges of the road) to
shared memory. Separate application is responsible for fetch-
ing coordinates of obstacles detected by planar lidar. They are
also written to shared memory. Third application in charge of
reading all the points available in shared memory, trajectory
planning, deriving current setpoint for speed and steering angle
and sending these values to controller (AnyFC - STM32) via
serial connection.

B. Controller

High-level control the concept of state machine is realized
by controller. Every state involves low-level control operations
that need to be performed. Figure 7 presents chart of state
machine realized by controller

Figure 7. Chart of state machine realized by controller

As in case of autonomous cars driving in real traffic, also in
case of small scale agents there is strong demand to operate
fulfilling hard real-time conditions. To provide such determin-
istic and safe behavior Real-Time Operating system is used.
Implementation of FreeRTOS, open-source real-time operating
system, is installed on STM32 micro-controller. Application
running in FreeRTOS integrates and governs gathering of
sensor inputs, setpoints from computer unit and setting signals
for actuators. It also realizes speed controller loop.

FreeRTOS enables setting priorities for particular tasks. Fig-
ure 8 presents hierarchy of tasks realized in design application
in regards to priority. The top priority is assigned to receiving
information from remote control equipment. It enables to take
over the control of the car in every situation. Task responsible
for remote battery diagnostics has the lowest priority. If few
tasks have the same priority the Round Robin algorithm is
responsible for their threads scheduling and time sharing.

Figure 8. Prioritisation of tasks realized in FreeRTOS application

Implementations of data reading and writing differ across
the peripherals used for particular systems element. All of
them are using DMA (Direct Memory Access) mechanism to
access.

To ensure synchronization of access to data (read/write
operations) Interrupts Manager is utilized.

V. LOCALIZATION

The localization service is provided by image analysis.
Position of the vehicle in regard to road edges is being
determined. All the computations for this purpose are needed
to be done in the real-time drumbeat. They are performed on
the computer unit.

3 separate approaches for road lane perception were tested.
All of them are based on lines that are marking edges of the
road. Methods’ description and assessment is provided below,
in sections V-A and V-B.

A. Edges slopes analysis

The main task of computer vision application is vehicle
localization on road lane and providing information about lane
curvature.

In general every captured frame is processed in following
steps:

1) Camera frame capturing in YUYV2 format
2) Getting Y channel (gray-scaled image)
3) Applying Gaussian blur for noise elimination
4) Binary thresholding to distinct candidates for lines

5) Applying dynamic mask to shrink Region of Interest
basing on lines captured in previous frame

6) Finding short white lines and calculating slope for each
one

7) Dividing lines to associated with right and left edge of
the road basing on calculated slopes

8) Determining horizontal position of car on road in regards
to road edges

9) Calculating slope of the road as average of slope of its
edges

10) Sending information to main controller
Figure 9 is presenting input (top) and output (down) frames

of algorithm in straight lane 9a and turning lane 9b scenarios.

(a) Straight road scenario (b) Turn scenario

Figure 9. input (top) and output (down) frames of road lane perception
algorithm

Above algorithm enables extraction of proper information
from captured frames despite the fact that road edge can be
continuous, dashed or broken. This image processing method
works only in very structured environment - white lines on
dark background. As all the control is based on current input
frame (no trajectory planning), this approach provides strong
results in very deterministic environment, but it is not noise-
resistant and fails easily when unexpected object occurs in the
frame. It is good way to drive in prepared indoor scenarios,
but not in the outdoor world

B. Moving ROIs

To significantly decrease computational load only specific
Region of Interests are searched for line. They are defined
based on the past captures.

After initial line detection in whole captured frame and
receiving start signals (start lights handling is described in
section VIII-A), system is working with incoming frames in
following way:

1) Applying Gaussian blur for noise elimination
2) Bird-eye transformation for obtaining the real-scaled

road map
3) Color space transformation from RGB to HSL (Hue,

Saturation Lightness)
4) Separation of HSL channels
5) Adaptive thresholding for channels (threshold value is

obtained for blocks of 20x20 pixels. In daylight the best

results were achieved using S channel to yellow line
detection and H or L channel for white one.

6) Conjunction on thresholded binary frames for noise
reduction (only line left)

7) Morphological dilatation
8) For all the ROIs defined from the previous frame:

• Horizontal histogram calculation
• Obtaining histogram peak - getting its global coor-

dinates
• Saving coordinates of histogram peak as center of

the ROI for the next frame processing
9) ROIs setup validation - initial check for detected lines

consistency
10) Inverse bird-eye transformation (for visualization)
11) Coordinates of obtained points (labeled as yellow or

white) are written to shared memory to feed algorithm
for trajectory planning.

(a) Input frame (sample 1) (b) Input frame (sample 2)

(c) Bird-eyes transformation (sample 1) (d) Bird-eye transformation (sample 2)

(e) Morphological dilatation (sample 1)(f) Morphological dilatation (sample 2)

(g) Inverse bird-eyes transformation (h) Inverse bird-eye transformation

Figure 10. Major steps in line detection algorithm

VI. TRAJECTORY PLANNING

Trajectory planing is realized by separate application run-
ning on the computer unit. It takes coordinates of characteristic
points written to shared memory by localization application.

The data sharing via shared memory is very efficient, well-
constrained and generates no latency.

Having coordinates of points on lines and objects detected
by lidar sensor, trajectory planning process is in charge of
deriving setpoint for speed and a steering angle and sending
these values to controller via serial communication.

Map of points is scanned horizontally with rectangular win-
dow. When concentration of characteristic points is detected,
rectangular region is saved as line containing (pinky rectangles
on figure 11). To speed up the whole process, next rows of the
frame are scanned only in neighborhood of previously saved
rectangular area. Above approach ensure proper filtering out
false positives brought to shared memory by computer vision
application.

Spline curves are built on centers of rectangular areas to
approximate the edges of the road. The final trajectory is
defined as the spline built on the center of the vehicle and set
of points that are in equal distance from both edges. Typically
up to 5 points is enough to draw a reliable trajectory. If one
edge of the road is not visible in current camera capture,
algorithm is navigating the vehicle in the way to keep the
constant distance for one line

To determined current setpoint for steering angle 2 tangents
are built: one on the position of the car and the second in some
distance ahead. Weighted average of their angle (measured
from vertical line) is setpoint for steering angle that is sent to
controller unit.

Trajectory planning algorithm is parametrized to be ad-
justable to testing environment.

Figure 11 presents visualization of trajectory planning and
current direction at a given point of time.

Figure 11. Sample trajectory planning and current direction calculation

A. Collision Avoidance

As one of requirements for circuit race is to avoid physical
contact with the competitor vehicles or static obstacles, such
functionality was implemented. Looking for the simple and
light (in terms of computing load) solution two approaches
for collision avoidance were provisioned and tested.

First one is based on planar lidar sensor inputs and optimal
trajectory modification. Similarly to points symbolizing road
lane borders, coordinates of detected objects provided by lidar
sensor are being written to shared memory of processing

computer. Application responsible for trajectory planning takes
them as an input and basing on minimum distance assigns
them to left of right lane of the road. In this way vehicle is
always navigating to drive through the widest slot between
obstacle and edge of the road. In testing it occurred that this
method works perfectly only in cases with single obstacle. It
has problems with multiple objects and due to small range
of planar lidar (up to 1 meter after filtering out noise) it is
possible to used only with very low speeds. Due to that small
range and high level of noise achieved in outdoor testing new
solution that is not utilizing planar lidar was needed.

Second approach considered was far more simplified. It
utilizes TFmini laser sensor and its operating range of over
8 meters. Idea was to always stick to trajectory that is closer
to one road edge than another. After detection of obstacle in
front of the car, priority is switched to second edge of the
road and the trajectory is drafted closer to it. Similar switch is
performed every time potential collision is assumed. This naive
method has provided very strong results in the test sessions.
Its main advantages are not only simplicity and low computing
load, but also possibility to operate in high speeds due to
sensor long range and high frequency (100 Hz). It is worth
to mention that this solution could strongly decrease whole
hardware costs, because it is based on cheap one dimensional
sensor (TFmini - $40).

VII. HIGH-SPEED CONTROL

A. Speed control

One of threads defined on STM32 controller is responsible
for the speed control. It is periodically invoked by CPU on
controller board (AnyFC - STM32). It realizes PID controller
taking setpoint received from trajectory planner. Actual value
is calculated based on magnetic encoders output. Encoder with
proper filtering environment is mounted in the car. Source
of magnetic field are magnetic rings mounted directly on
the drivetrain shaft. With this setup ring is generating 10240
impulses per one shaft rotation. Due to gearshift existence, it
gives even better resolution in terms of number of impulses per
one rotation of the wheel. In iterational tuning it was possible
to determine the proper terms for the controler. Figure 12
presents how speed of 2 m

s in time of 0.7 second.

Figure 12. Response of speed controller for unit step (setpoint: 2m
s

)

VIII. SELECTION OF OTHER SOLUTIONS

A. Starting lights handling

Starting lights handling is based on a differential algorithm.
Vision system is sending start signal to vehicle controller
immediately after recognition of significant difference between
to consecutive frames. To avoid impact of background noise
only selected Region of interest (where traffic lights are
expected) is analyzed. Number of pixels that need to be
perceived as changed is thresholded to filter out false positive
signals and limited to avoid reaction for externally caused
camera vibration.

The best result and repeatability was achieved during an-
alyzing pixels values in HSV space. Recording changes in
lightness channel it possible to detect simultaneous change of
values for pixels representing both red and green light areas.
When above scenario is recognized, start signal is send to car
controller and race begins.

B. Attitude and heading reference system

o komunikacji z układem służy interfejs SPI1. Obsługę
MPU6000zrealizowano w oddzielnym wątku GyroTask. Wątek
napisany jest w sposób następujący:

IX. CONCLUSION

The designed systems are successfully implemented in vehi-
cle. Initial assessment and testing suggest that vehicle is ready
to present satisfying performance during competition. Team
focus was put on building software for off-shelf hardware
to not recreating well known electronic circuits. Simplicity
of algorithm and repeatability of it results were the most
important criteria in every conceptual decision.

In both design and implementation phase a lot of obstacles
were overcome. Team members learned a lot not only in their
technical domains, but also in area of system designing and
team work coordination. It is irreplaceable experience. As
key learning it is worth to mention importance of detailed
definition of responsibilities assigned to particular system
components, its input and outputs, Also how important is
to optimize computation load to enable using more complex
algorithm in high-speed operating robots.

APPENDIX A
Table I presents detailed list of costs incurred during build-

ing vehicle.
Table II lists all the people involved in this project. The team

consist of 10 student members: 7 undergratudates and 3 grad-
uates. They are students of Computer Science, Mechatronics
and Robotics from 4 different faculties of Warsaw University
of Technology.

ACKNOWLEDGMENT

Authors are members of Students’ Robotics Association
(Koło Naukowe Robotyków) at the Faculty of Power and
Aeronautical Engineering, Warsaw University of Technology.

Research done cooperating with the Faculty of Power and
Aeronautical Engineering within the framework of "Najlepsi
z Najlepszych 2.0!" program.

Table I
COST OF VEHICLE COMPONENTS

Element Model Cost

Chassis Associated Team RC8B3.1e $500
BLDC Motor Reedy Sonic 1512 1800kV $150
Servo Motor Sevox SC-1258TG $60
ESCS (controller) XERUN XR8-Plus $140
Motherboard ASRock H110M-ITX $60
Processor Intel Core i3-7100T, 3.4GHz,

3MB
$120

Memory GoodRam DDR4, 4GB,
2.4GHz, CL12 + SSD Slicon
Power A55 64GB

$75

Camera Kurokesu C1 / IDS UI-
1220LE

$100 / $330

Autopilot AnyFC F7 $45
Laser sensor TFmini $40
Lidar Hokuyo URG-04LX-UG01 $1000
Remote controller FrSky Taranis Q X7 $120
Batteries + wiring LiPol 4S $40
Mechanical parts ABS for 3D printing, metal,

carbon fibre, screws
<$20

SUM $2470 / $2700

Table II
TEAM MEMBERS

Name Role

Mateusz Perciński Project Lead
Mikołaj Marcinkiewicz Finance, Integration
Mateusz Grudzień Computer Vision, Computing
Maciej Krasa Computer Vision
Kornelia Łukojć Computer Vision
Mateusz Marczuk Trajectory Planning, Control Systems
Mateusz Mróz Embedded Software, Control Systems,

Electronics, Integration
Michał Jarzyński Embedded Software, Control Systems
Krzysztof Gawin Mechanics, 3D Printing
Łukasz Jakubowski Mechanics, 3D Printing

Ph.D. Krzysztof Mianowski Assistant Professor - Scientific Super-
visor

REFERENCES

[1] B. S Khan, M. Hanafi, S. Mashohor Automated Road Marking Detection
System for Autonomous Car. 2015 IEEE Student Conference on Research
and Development (SCOReD), 2015, pp. 398 - 401

[2] Shimil Jose, Sajith Variyar V V, Soman K.P Effective Utilization And
Analysis Of ROS On Embedded Platform For Implementing Autonomous
Car Vision And Navigation Modules, 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
2017, pp. 877 - 882

[3] A. Iqbal, S. S. Ahmed, M. D. Tauqeer, A. Sultan, S. Y. Abbas Design
of Multifunctional Autonomous Car using Ultrasonic and Infrared Sen-
sors, 2017 International Symposium on Wireless Systems and Networks
(ISWSN), 2017, pp. 1 - 5

[4] M. Martinez, A. Roitberg, D. Koester, B. Schauerte, R. Stiefelhagen
Using Technology Developed for Autonomous Cars to Help Navigate
Blind People, 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW), 2017, pp. 1424 - 1432

[5] G. S. Pannu, M. D. Ansari, P. Gupta Design and Implementation of
Autonomous Car using Raspberry Pi, International Journal of Computer
Applications (0975–8887) Volume 113-No.9, March 2015

[6] T. Wankhade, P. Shriwas, Design of Lane Detecting and Following

Autonomous Robot, IOSR Journal of Computer Engineering (IOSRJCE)
ISSN: 2278-0661 Volume 2, Issue 2 (July-Aug. 2012), pp. 45-48.

[7] X. Miao, S. Li, H. Shen, On-Board lane detection system for intelligent
vehicle based on monocular vision, International Journal on Smart Sens-
ing and Intelligent Systems, vol. 5, no. 4, December 2012, pp. 957-972.

[8] S. Tuohy, D. O’Cualain, E. Jones, M. Glavin, Distance determination
for an automobile environment using inverse perspective mapping in
OpenCV, Irish Signals and Systems Conference 2010.

