
Design and Implementation of the University of
Ottawa IARRC Entry

Jimmy Deng
Team Lead

Ottawa, Canada
jdeng035@uottawa.ca

Yu Jiang
Team Co-Lead
Ottawa, Canada

bjian038@uottawa.ca

Rock Liang
Ottawa, Canada

rlian072@uottawa.ca

Tommy Deng
Ottawa, Canada

tdeng075@uottawa.ca

Adel Rashed
Ottawa, Canada

arash063@uottawa.ca

Miranda Holder
Ottawa, Canada

mhold049@uottawa.ca

David Nduka
Ottawa, Canada

dnduk048@uottawa.ca

Lucas Anderson
Ottawa, Canada

lande051@uottawa.ca

Abstract—This document is the submission for the Interna-
tional Autonomous Robot Racing Competition 2018 from Ot-
tabotics, the University of Ottawa’s robotics team. This document
highlights the conceptual design and the various components of
our autonomous racing vehicle.

I. INTRODUCTION

This document is separated into three major sections: Me-
chanical System, Electrical System, and Software System.
Each of these sections will explore the conceptual design of
the subsystem, design decisions, and problems we faced.

Fig. 1. Image of mostly assembled vehicle.

II. MECHANICAL SYSTEM

For the mechanical system, instead of designing and fab-
ricating the frame to custom specifications, we decided to
extend the functionality of an existing RC car model. Our
vehicle is built upon the frame, motor, gearbox, drivetrain, and
steering system of the RC car, which is shown in Figure 2. We
extended the functionality of the base RC car by designing and
fabricating a roll cage and a multi-layered platform to house
the electrical components.

Since this is our first vehicle for the International Au-
tonomous Robot Racing Competition, we decided to design
our vehicle with ease of prototyping and modularity in mind.
The use of multiple layers of platforms, of which one is shown
in Figure 3, within a rectangular roll cage allows the various
subsystems to be modular and to be easily removed for testing
and prototyping. For example, layer 0 is used for the drivetrain,

Fig. 2. Existing RC car model.

power, and steering. Layer 1 is used for the electrical and
safety systems. Layer 2 is used for anything that involves
computer vision and higher level computing such as the mini
PC. Additional components, such as sensors, can be easily
attached to the roll cage which consists of cylindrical PVC
piping and joints.

The following are a few of the problems that we encountered
while designing and fabricating the mechanical system. First,
the suspension was not designed for our use case and payload.
The default suspension for our RC car frame was designed
for off-road, low-load racing, and without modifications, it
is not able to carry all of the necessary components for
autonomous navigation. This was fixed simply by adding
spacers to increase tension in the springs. Second, it was
difficult to attach a custom roll cage onto the existing RC car
frame because attachment points were not evenly positioned
and were not all on the same plane. This was solved by
designing and 3D printing custom anchor points/adapters, as
shown in Figure 6 and 7, which mount directly onto the
existing RC car to provide mounting points throughout the
frame. These anchor points also feature embedded nuts to
provide ease of mounting for the roll cage and any additional
components.

A. CAD Drawings

Figures 3 to 7 show several CAD drawings for varying
components.



Fig. 3. One of the layers of the electronics platform.

Fig. 4. Camera case.

Fig. 5. Ultrasonic sensor array holder.

III. ELECTRICAL SYSTEM

The electrical system is centered around an Arduino Nano
board. It handles two major inputs and two major outputs.
The first input is a message from the mini PC over a serial
USB line. This is used to communicate the desired steering
angle, vehicle speed, and other miscellaneous messages. The
second input is a digital signal from the Arduino slave board
to trigger an interrupt in the case where an emergency stop
must be performed. The first output is a 1kHz PWM signal
to the speed controller to control the speed of the motor. The
second output is a 31.25kHz PWM signal to a servo to control
the vehicle steering angle.

A. Communication System

The Arduino master board receives serial messages through
its USB port from the mini PC, which handles all of the
computer vision and processing. Messages can be up to four
characters. The most common message that is handled by the
Arduino master board is a steering command which consists
of the character ‘a’ and an integer between 0 and 180. Vehicle
speed messages have a similar command consisting of the
character ‘s’ and an integer ranging from 0 to 255.

B. Safety System

The wireless emergency stop system is used to remotely
stop the vehicle in the case where autonomous control be-
comes sporadic or possibly dangerous. It is configured to act
like a dead man’s switch where the vehicle will run normally
if the switch is pressed, but stop if released. The system
repurposes the RF transmitter and receiver from the existing
RC car platform, as shown in Figure 9. The RF transmitter
consists of two inputs controlled by the operator: a trigger
and a rotary switch. The trigger is used to control whether

Fig. 6. Front anchor point.
Fig. 7. Left anchor point.

the vehicle runs or stops. The switch is used to restart the
vehicle and has two states, Restart and Current. The Restart
state restarts the program while the Current state does not
change vehicle’s state. The two outputs of the receiver are
connected to the Arduino slave board. The outputs send two
PWM signals, Signal 1 and Signal 2, in response to the
trigger and switch respectively, and the Arduino board reads
the amount of time the signals are High. For the vehicle to
start, the trigger must be in its Pulled state, and the switch
must be in the Current state. To stop the vehicle, the trigger
must be Released. The vehicle will also stop if the connection
between the transmitter and receiver is interrupted or lost. To
restart the vehicle, the trigger must be Pulled, and the switch
must be turned to its Restart state. After the vehicle restarts,
the switch should be immediately turned to the Run state
to prevent continuous restarting of the program. The various
states of the system can be referenced in Table I.

C. Speed Controller

The original speed controller that came with the RC car, XL-
5, was replaced with a Pololu High-Power motor driver. This
new speed controller design allows for simple fault detection.
The three faults displayed are short circuit across the motor,
overtemperature and under voltage. When the short circuit
fault occurs, the car stops until the reset pin is pulled low.
This is resolved with a simple button switch between the reset
pin and the grounding node.

D. Power System

Our power system consists of two independent power
sources. An 8.2V battery is used for the drivetrain, which
consists of a motor and a speed controller. A 5V battery is used
for the vision and communication systems, which consists of
the mini PC, Arduino Nano boards, and various sensors.

IV. SOFTWARE SYSTEM

The context of the problem involves localizing and lane
detection to assist the vehicle to perform intellectual deci-
sion during driving. The breakdown of the software involves
camera calibration, image preprocessing, object detection, and
predicting angles of changes based on image and object
avoidance.

A. Camera Calibration

A non-calibrated camera can result in false geometric
perception rather than perceiving actual shape (known as



Fig. 8. Electrical diagram.

TABLE I
SAFETY SYSTEM STATES

RF Connection Trigger Switch Signal 1 High Time (ms) Signal 2 High Time (ms) Vehicle State
Interrupted / Lost x x x x Stops

Connected Released Run T < 953 OR T > 1113 T < 1948 OR T > 1113 Stops
Connected Released Restart T < 953 OR T > 1113 1948 < T < 2008 Stops
Connected Pulled Run 953 < T < 1113 T < 1948 OR T > 1113 Runs
Connected Pulled Restart 953 < T < 1113 1948 < T < 2008 Restarts

Fig. 9. Traxxas two-channel controller with the trigger and rotary switch
indicated in red and green respectively.

distortion), thus calibrating the camera can prevent the vehicle
from receiving false information and intrinsic parameters for
localization. In photography, a distorted image can cause
false geometric perception of the object and its surrounding
known as perspective distortion. This changes the actual
perceived length of the object. As Figure 10 shows, the
square chessboard appears to be distorted into a spherical-
squarish shape. In which the height and width of the object
is not the same as our own perception. In Figure 10, the
chessboard appears similar to an actual square. This known as

perspective distortion; this is a transformation of an object and
its surrounding when its perception significantly differs from
its actual shape. OpenCV provided optimized solutions with
function findChessboardCorner to extract the intrinsic
matrix of the camera. Camera calibration is inevitable step
for localization, which can help the car to accurately perceive
vision data.

Fig. 10. Distorted image. Fig. 11. Undistorted image.

B. Traffic Light Detection

The traffic light is detected by first isolating it within an
image and then filtering the colour to determine the state.



Isolating the traffic light involves using the scale-invariant
feature transform (SIFT) algorithm implemented in OpenCV
to match a given reference image to an area in a different query
image. If provided sufficient reference images, the process will
return the portion of a different image that is most similar to
the reference image that also meets an user-defined similarity
threshold.

Once the traffic light is localized, the state of it (red
or green for ‘stop’ and ‘go’) is found through filtering for
prominent colours. Typically, images are stored in an Red-
Green-Blue (RGB) based colour space which is not suitable for
determining a range of colours (i.e. shades of green of varying
intensities). For this reason, a Hue-Saturation-Value (HSV)
colour space, which has properties that allows for specifying
colour ranges, is used instead. Upper and lower bounds of
colour values are manually defined for the red and green
colours based on the reference images. The state is decided if
there are enough red or green pixels in the image to pass a
minimum threshold. See Figure 12 and Figure 13 for a visual
example.

Fig. 12. Red traffic light template im-
age. Fig. 13. Red traffic light mask.

C. Video Streaming (Interframe compression)

To reduce packet size when streaming video from the
vehicle to an external display, only the difference between the
current and previous frame is sent. An initial ‘soft mask’ is
found with OpenCV’s absdiff function of which any non-
black pixel is considered different and will be sent. Figure 14
shows the different stages an image undergos from the original
to the reconstructed image.

Fig. 14. Stages of the original and reconstructed image.

D. Communication System

The communication between the mini PC and the master
Arduino board is done through serial over a USB connection.
The implementation on the mini PC side is done using PySe-
rial, a Python library. Commands for vehicle speed, steering
angle, and other miscellaneous commands are sent as one to
four character packages to maximize throughput and latency.
Acknowledgement responses from the master Arduino board
are read using a separate concurrently running thread.

E. Pathfinding and Steering System

We are taking a purely vision based approach for the
pathfinding and steering system. The first step, aside from any
preprocessing, is to determine the boundaries, if any, in front
of the vehicle. In the case of this competition, boundaries are
represented by yellow and while lines of tape. Line segments
are filtered out from the preprocessed video stream from
the camera using OpenCV’s HoughLinesP function which
returns a set of line segments represented by start and end
points. These line segments are then filtered by angle and
clustered into groupings of similar angles. Finally, the resulting
turn angle is determined by computing a weighted sum of the
dominant turn angles from the bottom of the frame to the top.


