

IARRC 2018: Wild Bobcats

Letian Lin, Yingnan Zhang, Yichao Li. Yang Liu, Yuanyan Chen, Miguel Sempertegui Sosa, Stuart Randle,

Hong Zhang, Matchima Buddhanoy, Krerkkiat Chusap, Jonathan Waters, David Wisniewski,

Logan Wilkovich, Dylan Denner, Archie Scott, Mitchel Brightman

Faculty Advisor: J. Jim Zhu (zhuj@ohio.edu)

Ohio University Professsional Autonomous Vehicle Engineering Team (OU-PAVE)

Russ College of Engineering and Technology, Stocker Center 155, Athens Ohio 45701

I. INTROFUCTION

The Ohio University Professional Autonomous Vehicle

Engineers (OU_PAVE) team undertook the challenges in

developing the technology for high-speed autonomous vehicles

and robots, and entered the IARRC completion. In particular,

the competition requirements call for:

 An autonomous car that has the racing ability under the

realistic race conditions as well as guarantees safety for

both vehicles and competitors

 High-speed vehicle localization

 High-speed vehicle control (acceleration and braking)

on different surfaces

 Start/Stop light and roadway detection

 Collision avoidance with static objects along boundaries

of course

 Collision avoidance with other competing robots.

The team followed the profession engineering design

practices, started by formulating the design rules into

engineering requirements, and went through many formal

design and testing reviews. The completion of the project also

helped the students to develop many useful skills in teamwork,

communications, ethics, and project management. This report

summarizes the main technical design and testing results of our

entry: The Wild Bobcat autonomous vehicle.

II. VEHICLE SUBSYSTEM DESIGN

Based on the vehicle size, weight and speed requirements,

our Wild Bobcat was modified from a commercial RC model

monster truck, the Traxxax X-MAXX, as shown in Figure 1. In

order to satisfy the length requirement of no more than 0.75 m,

the wheelie wheel in the back of the vehicle was removed.

Three cameras, one 2D Lidar and two sonar sensors were also

installed on the body shell, and an instrument panel was

installed inside on the chassis. A custom made motor shaft

encode was installed on the motor pinion gear. The total weight

was controlled to be under 12 kg. The finished vehicle is shown

in Section VIII.

Figure 1. Traxxas X-MAXX

III. ELECTRICAL AND ELECTRONICS DESIGN

The electrical and electronics design includes power

distribution and signal communications. Figure 2 shows the

computing platforms, sensors, actuators, wireless

communication antennas along with the power lines and signal

communication protocols. It is noted that the wireless E-Stop

transmitter and receiver are custom made. Also, the onboard e-

stop system includes a regenerative brake using a 3-phase

rectifier and a bank of 12V/50W lightbulbs to quickly dissipate

the vehicle’s kinetic energy when braking at high speed.

IV. SYSTEM ARCHITECTURE

The autonomous vehicle control system comprises three

subsystems: (i) navigation (localization), (ii) cognitive control

and (iii) motion control, as shown in Figure 3. Each subsystem

will be described in the following sections.

2

Figure 2. Electrical and Electronics Subsystem Design

Figure 3. Autonomous Vehicle Control System Architecture

V. NAVIGATION (LOCALIZATION) SUBSYSTEM DESIGN

The navigation subsystem consists of motion sensors and

environment sensors. High-speed localization relies on the

motion sensors, while autonomous driving operations, such as

lane following, start/stop signaling and moving obstacle

avoidance reply on the environment sensors.

The Motion Sensor System includes GPS/INS (Inertial

Navigation System and velocity encoder data processing. In

practice, the onboard inertial sensors, like gyroscopes and

accelerometers will have some bias. If these signals are used

directly to calculate the orientation and position by integration,

the results would drift because of the bias. Comparing to inertial

sensors, GPS is much more accurate over time, but the data

update frequency is lower than inertial sensors. The quadrature

motor shaft encoder can be erroneous when vehicle is in

dynamic motion due to wheel slipping and skidding, but

provides relatively accurate velocity data when the vehicle is

running at constant velocity.

All of the on-board sensors data, like gyroscopes,

accelerometers and encoder data update at 100 Hz, which

ensure the high-speed localization. In this project, a 3DR GPS

module with Ublox LEA-6H GPS chip is introduced. The

accuracy is up to ±2 meters at 15 satellites fix and 1.0 HDOP.

The update rate is 5 Hz. A bias removal function is applied to

the inertial sensors, and a Kalman filter algorithm is employed

for inertial and shaft encoder sensor data fusion. For outdoor

operations, the GPS and magnetometer data are also fused in

with the inertial and encoder data using the Kalman filter.

The vision system is specifically designed for the IARRC

competition. It consists of two parts: the lane detection algori-

thm that is primarily based on OpenCV and the object detection

algorithm primarily that is based on TensorFlow Object

Detection API.

The lane detection algorithm is different from the standard

Hough Transformation, which runs in cubic time complexity

and is not applicable in real time system [1] [2]. Three lookout

range lines that mark 1m, 2m, 3m distance from the car are set

for each frame. At each lookout range we detect the white color

(left line), yellow color (right line), and magenta color (end

line). Points are fitted into a linear function using

scipy.stats.linregress for further reducing the noise and

determining the left turn and right turn moves. The vision

sensor data are first passed to an event generator. The output

events then serve as the input to the cognitive state machine.

Table 1 shows all the data detected in the vision system.

The object detection algorithm is based on the Single Shot

Detector Lite – MobileNet V2 model [3]. Pretrained SSDLite-

MobileNetV2 using the COCO dataset was downloaded from

the TensorFlow Model Zoo. Such model was retrained to detect

red/green traffic light and cones.

3

Figure 4. Example of detected lanes and objects.

Table 1. Vision data and event generation

VI. COGNITIVE SUBSYSTEM DESIGN

Vision

Ranging

Path

Planning
PathToTraj

Cognitive

State Machine

Sonar

Processor

read_data

_from_hiq

send_data

_to_hiq

send_data_to

_guidance

Sensor Processror

Trajectory

Planner

Serial

Communication

VisionArray_b

MAP_Lidar_b

Path
Trajectory

MotionState

L
o

o
k

o
u

t

R
a
n

g
e

SpeedLimit

DirectionMode

SonarMode

LidarTime

VisionTime

W
a
y

P
o

in
t

MAP_

localMapping

Front Cam

Lidar

Left Cam

SFL

SFR

SRL

SRR

Right Cam

VisionMode

Event

Generator

Events

Figure 5. Cognitive Control Subsystem.

Cognitive state machine. The overall cognitive control

system is shown in Fig. 5, where “left/right” refer to the driver’s

left/right. The event-driven cognitive state machine which is a

Mealy state machine conducts the high level decision. The

events which are the output of the environment sensor system

serve as the input to the cognitive state machine. The events

together with the current state determine the state transition.

The output logic sets the appropriate value to the outputs

according to the current state and input.

The events that passed to the cognitive state machine are

labeled with numbers as shown in the following tables.

Figure 6. Principle of a Mealy machine

The state of the system is represented by a 5-digit decimal

number of the form (Traveling mode, Turn, Car avoidance, Car

chasing, Course selection). Each digit represents the value of a

specific state variable.

Table 2. Cognitive events

Event

class

Event (Input)

Light 0 - Green Light

Side line 1 - Only left line

2 - Only right line

3 - Left line close

4 - Right line

close

Shortcut 5 - Shortcut
entrance

6 - Shortcut exit

Horizontal

line

7 - Horizontal left

line (1m, 2m, 3m)

8 - Horizontal

right line (1m,

2m, 3m)

9 - Finish line
(1m, 2m, 3m)

Other cars

in the
course

10 - Left car

11 - Right car

12 - Front car

Table 3. Cognitive states

State

Variable

Value

Traveling

mode

0 - Ready

1 - Go

2 - Finish

Turn 0 - No turn

1 - Left turn

2 - Right turn

Car

avoidance

0 – No car

1 - Left car

avoidance

2 - Right car
avoidance

3 - Front car

avoidance

Car
chasing

0 - No chasing

1 - Chasing

Course

selection

0 - Normal

1 - Go shortcut

Lap

number
counter

n - Up to N laps

The outputs of the state machine are listed as following. The

output is represented by a 4-digit decimal number of the form

(Direction mode, Speed limit level, Lookout range level,

Waypoint selection scenario).

An example for the state transition of the cognitive state

machine is shown in Fig. 6, where the car starts to run when the

traffic light is switched to green, then it takes a sharp right turn

Source Data Data Format Trigged event

Front

camera

Left_line_point Float Only left line,

Only right line,

Both lines
Right_line_point

Finish_line_distance Finish line (1m,

2m, 3m)

H_left_line Horizontal left line

(1m, 2m, 3m)

H_right_line Horizontal right

line (1m, 2m, 3m)

Left_cone Shortcut entrance

(1m, 2m, 3m),
Shortcut exit (1m,

2m, 3m)

Right_cone Shortcut entrance
(1m, 2m, 3m) ,

Shortcut exit (1m,

2m, 3m)

GreenLight Boolean Green Light

Left

camera

Left_line_distance Float Left line close

Right

camera

Right_line_distance Right line close

input/output Current
state

Next
state

4

when a horizontal left line is detected. After the car goes back

to the straight course, it passes a front car. After the car runs

two laps, the car stops at the finish line. In the Fig 7, the capital

E, S and O represents the event, the state and the output,

respectively. The resulted state transition is: S00000 → S10000

→ S12000 → S10000 → S00300 → S10000 → n+1 → S10000

→ S12000 → S10000 → S20000.

Output variable Value

Direction Mode 0 - Forward

1 - Stop

2 - Reverse

Speed Limit level 0 - Slow

1 - Medium

2 - Fast

Lookout Range level 0 - Near

1 - Medium

2 - Far

Waypoint selection
scenario

0 - Both lines

1 - Only left line

2 - Only right line

3 - Horizontal left line

4 - Horizontal right line

5 - Left car

6 - Right car

7 - Front car

8 - Between cones

9 – No way out

Table 4. Cognitive outputs

20000
10000

12000

00300

Green light/

O0220

Horizontal

left line/

O0003

No

horizontal l ine/

O0220

Front car/

O0007
No car/

O0220

Finish line/

O0220

No event/

O0220

Red light/O1000

00000

Sys tem start,

n =0

n+1
n<N/

O0220

n=N/

O1000

Figure 7. The state transition diagram for the example

Path Planning. The path planner is responsible for

generating a feasible, collision free path that leads the vehicle

to the target. In our design, the path planner produces the

waypoints based on the output of the cognitive state machine.

As an example, consider the following two different driving

scenarios: driving without other cars in the course and driving

with other cars in the course, which are shown in the following

Fig 8. Scenario 1 consists of 2 sub-scenarios: the case when two

boundary lines can be seen by the camera and the case when

only one line can be seen.

Consider the scenario that no car is in sight. If both of the

boundary lines are in the view of the camera, then the waypoint

is simply taken as the middle point of the intersections of the

lookout range line and the boundary lines. If only one boundary

line is in the view, for instance, the left line, then the waypoint

is taken on the lookout range line on the right of the left line

with a proper distance. In the scenario that there are other cars

in sight, the way point is properly taken between the lines and

the other cars to allow the car to go through without collisions.

If there is no sufficient space to overtaken the front car, then the

speed of the vehicle is reduced and the chasing state is entered.

2 lines in the view 1 line in the view

Other cars in the course

Driving Scenarios

Waypoint

Waypoint

No car in the course

Lookout

range line

Lookout

range line

Waypoint

Lookout

range line

Figure 8. Path planning Scenarios

Path-to-trajectory conversion. The path-to-trajectory

converter is used to assign a feasible velocity profile along the

path and thus convert it to a nominal trajectory. Out optimality

objective for velocity assignment is to minimize the traveling

time of the car to reach the goal. Also, the path-to-trajectory

conversion must be subject to both the kinematics and

dynamics constraints of the car. The traditional approach is

formulating the path-to-trajectory conversion as a free-ending-

time optimal control problem. However, the corresponding

computing time is usually too long to satisfy the real-time

requirement.

By the dimension of the Wild Bobcat, the competition

course (including the shortcut) is sufficiently wide for the car

to drive without needing backups. Therefore, after the path

5

planner determines the waypoints in the course properly, a fast

line-of-sight pure pursuit guidance (LOS PPG) [4] is adapted to

conduct the trajectory tracking guidance. LOS PPG has been

used in aircraft guidance design. By taking into account the

nonholonomic constraint, as well as the constraints on the linear

and angular velocities, linear and angular accelerations, and the

curvature, we modified LOS PPG to generate a feasible

trajectory for car-like ground vehicles. The LOS PPG trajectory

generator consists of four subsystems, including target seeker,

heading guidance, speed guidance and trajectory synthesizer, as

shown in Fig 9.

Figure 9. LOS PPG Trajectory Generation Architecture

The simulation results are shown in Section V.

Mapping. By using the data from the environment sensors

and the motion states from the motion sensors, the mapping

system updates the global map in the memory and retrieves a

local map for the cognitive control purpose. The map is

internally represented by a grayscale bitmap of range from 0 to

100, where each pixel corresponds to an inertial coordinate. For

each type of the objects, the pixels are assigned to a pre-defined

grayscale as shown in the following table.

VII. MOTION CONTROL SUBSYSTEM DESIGN

3 Degree-of-Freedom (DOF) motion may be categorized as

path-following and trajectory-tracking. Path-following only

requires the vehicle to follow a specified path without time

constraints. Thus, path-following controller systems only need

to deal with vehicle kinematics. In contrast, trajectory-tracking

control systems require the vehicle to traverse a prescribed path

with a given velocity. Trajectory-tracking is more challenging

than path-following because the vehicle dynamics must be

considered in addition to vehicle kinematics. For an under-

actuated, nonholonomic car-like ground vehicle trajectory

tracking Guidance, Navigation, and Control (GNC), we

consider the 3DOF nonlinear vehicle rigid-body dynamics with

nonlinear tire tracking force, nonlinear drag force and actuator

dynamics [5]. Conventional automatic motion controllers for

cars use separate controllers for steering and throttle, which

tends to limit the performance potential of the vehicle. In order

to effectively cope with the nonlinear and time-varying nature

of ground vehicle motion control. conventional systems may

use what is known as a Model Predictive Control (MPC)

technique. MPC runs a simulation of the vehicle motion with

currently computed controller gains. MPC performs an on-line

optimal control design to obtain a new set of gains, and repeats

the process at every control decision step, typically between 50

and 100 times per second. Such controllers are extremely time

consuming yet with limited performance and a lack of stability.

Compare to MPC, TLC is high computational efficiency and

effectiveness for high-order nonlinear plant. The controller

design has been filed an international patent application under

the PCT.

Object Grayscale

Unexplored area 0

Explored free area 10

Traffic light 20

Start line 30

Finish line 40

Left line 50

Right line 60

Shortcut entrance 70

Shortcut exit 80

Cone 90

Path 100

Table 5. Grayscale table for the objects

The control algorithm employs Trajectory Linearization

Control (TLC) based on singular perturbation theory. TLC is a

model-based controller, and it provides a nonlinear time-

varying controller that combines nonlinear dynamic inversion

(nominal controller) with linear time-varying feedback

stabilization (feedback controller), as shown in Fig 10. The

nominal controller approximately cancels the plant

nonlinearity, thereby reducing the tracking error to

facilitate linearization of the nonlinear tracking error

dynamics. The linearized error dynamics are then

exponential stabilized using time-varying Proportional-Integral

(PI) state feedback control law. A TLC based controller can be

viewed as the gain-scheduling controller that is designed at

each point on the trajectory to provide robust stability.

6

Figure 10. TLC structure

The overall closed-loop system consists of 4 loops as shown

in Fig 11, which are the guidance outer and inner loop, and

steering outer and inner loop. Each loop employs the TLC

structure as shown in Fig 10.

The high speed control algorithm is running on the

Quanser’s  HiQ Aero microcontroller with a Gumstix Verdex

CPU running at 0.6 GHz. It equipped with a 3-axis

accelerometer, 3-axis gyroscope, 3-axis magnetometer, 1 TTL

serial GPS port, and 10 channels PWM output. The real-time

control software Quarc generates real-time code for Gumstix

Verdex directly from Matlab/Simulink®. The on-board sensor

data and controller gains update at 100 Hz, which satisfy the

high speed trajectory tracking performance.

Figure 11. 3DOF Trajectory Linearization Controller Block

Diagram.

The guidance subsystem which generates a feasible

trajectory for the trajectory tracking controller is running on a

NVIDIA TX1 board. The generated trajectory is sending to the

HiQ through a serial communication port at 10Hz. Since the

different sampling times running on two boards, a low-to-high

data interpolation preprocessing is running on HiQ in order to

get a smooth trajectory.

The hardware tuning procedure is separated into two steps:

the nominal controller tuning and the feedback controller

tuning. The dynamics (bandwidth) of the nominal controller is

designed based on the desired bandwidth of the open-loop

controlled system. The guidelines for designed feedback

controller gains are: 1) the closed-loop bandwidth of the

innermost-loop is at least three-time smaller than the actuator’s;

2) an outer-loop closed-loop bandwidth is at least three-time

smaller than its immediate inner-loop; 3) the bandwidth of the

outer-most position loop should satisfy position error transient

requirement. Here are some trajectory tracking hardware test

results.

VIII. EXPERIMENTAL RESULTS

A. Vehicle Subsystem

The finished vehicle is shown in Fig 12 below. It is under

12 kg with a maximum speed of 10 m/s. The E-stop button is

on top of the vehicle.

Figure 12. Vehicle Subsystem

B. Electrical and Electronics Subsystem

The finished electrical and electronics panel is shown in Fig

13, along with the wireless E-stop transmitter.

Figure 13. E-E Panel and E-stop Transmitter

7

C. Navigation (Localization) Subsystem

Fig 14 shows a sensor fusion test result with GPS, INS

(accelerometer and gyroscope) and shaft encoder. The result is

overlaid to Google Earth map with adequate accuracy. Fig 15

shows the vision subsystem test results with traffic light in

difficult lighting conditions, white lines and orange cones,

respectively. The detection speed is deemed adequate.

Figure 14. GPS/INS Test result shown on Google Earth

Figure 15. Vision detection (light, cone, line)

D. Cognitive Control Subsystem

Figs 16-17 show the computer simulation of the shortcut

completion scenario and a high-speed LOS PPG scenario. The

results verified the design with high level of confidence.

E. Motional Control Subsystem

Figs 18-20 show trajectory tracking control hardware test

performed on a Traxxas E-MAXX vehicle for a 4-pedal rose-

curve trajectory at 2 m/s and circular trajectory at 5 m/s. Since

the TLC control algorithm is readily scalable, these results give

us high confidence for application on the larger X-MAXX.

Figure 16. Path Planning in the shortcut.

Figure 17. Simulation test of LOS guidance.

Figure 18. Rose: Vehicle Trajectory

Figure 19. Rose: Position and Velocity Tracking Response

8

Figure 20. Circle: Vehicle Trajectory

Figure 21. Circle: Position and Velocity Tracking Response

IX. INNOVATIONS

This project encompasses several innovations. A novel bio-

psychically inspired cognitive autonomous control architecture

[6]. The navigation (localization) employs sensor fusion with a

Kalman filter to enable inexpensive sensors for accurate and

high-speed operations. Machine vision system employs

advanced deep-learning neural network algorithms for object

identification with good results. The mission trajectory

planning system is constructed by using a line-of-sight pure

pursuit guidance trajectory generator [1] and a switching

control based path planner [3]. A PCT patent application has

been filed for the former, and a US provisional patent

application has been filed for the latter. A 3DOF Trajectory

Linearization Controller for non-holonomic car-like vehicles is

implemented for simultaneous and precise high-speed drive and

steering control [2] [4]. The control algorithm is based on

nonlinear vehicle and tire dynamic models. Therefore it has

good scalability and adaptability. An international patent

application under the PCT had been filed for the control

algorithm.

X. CURRENT STATUS AND FUTURE WORK

At this time the vehicle construction is complete, and

critical subsystems have been tested. In the remaining time

before the competition, integrated tests under the completion

scenarios will be conducted.

ACKNOWLEDGMENT

The OU-PAVE team express their gratitude to the Russ

Vision grant from the Russ College of Engineering and the

School of EECS for funding this project. They would also like

to thank Professors Maarten Uijt Haag, Jundong Liu and David

Chelberg for their generous support either by providing critical

components or their valuable technical insights.

REFERENCES

[1] Duan, Dagao, et al. "An improved Hough transform for line

detection." Computer Application & System Modeling (ICCASM),

2010 International Conference on. Vol. 2. IEEE, 2010.

[2] Asano, Tetsuo, and Naoki Katoh. "Variants for the Hough

transform for line detection." Computational Geometry 6.4

(1996): 231-252.

[3] Sandler, Mark, et al. "MobileNetV2: Inverted Residuals and

Linear Bottlenecks." Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2018.

[4] Chen, Yuanyan, and J. Jim Zhu. "Pure Pursuit Guidance for car-

like Ground Vehicle Trajectory Tracking." ASME 2017 Dynamic

Systems and Control Conference. American Society of

Mechanical Engineers, 2017.

[5] Chen, Yuanyan, and J. Jim Zhu. "Car-Like Ground Vehicle

Trajectory Tracking by Using Trajectory Linearization

Control." ASME 2017 Dynamic Systems and Control Conference.

American Society of Mechanical Engineers, 2017.

[6] J. Zhu and X. Xu, “Biopsychically Inspired Cognitive Control for

Autonomous Mobile Agents Based On Motivated Learning,”

Plenary Presentation, Proceedings, 2012 IEEE International

Conference on Methods & Models in Automation & Robotics,

Miedzyzdroje, Poland, August, 2012.

