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I. INTROFUCTION 

The Ohio University Professional Autonomous Vehicle 

Engineers (OU_PAVE) team undertook the challenges in 

developing the technology for high-speed autonomous vehicles 

and robots, and entered the IARRC completion. In particular, 

the competition requirements call for: 

 An autonomous car that has the racing ability under the 

realistic race conditions as well as guarantees safety for 

both vehicles and competitors 

 High-speed vehicle localization 

 High-speed vehicle control (acceleration and braking) 

on different surfaces 

 Start/Stop light and roadway detection 

 Collision avoidance with static objects along boundaries 

of course 

 Collision avoidance with other competing robots. 

The team followed the profession engineering design 

practices, started by formulating the design rules into 

engineering requirements, and went through many formal 

design and testing reviews. The completion of the project also 

helped the students to develop many useful skills in teamwork, 

communications, ethics, and project management. This report 

summarizes the main technical design and testing results of our 

entry: The Wild Bobcat autonomous vehicle. 

II. VEHICLE SUBSYSTEM DESIGN 

Based on the vehicle size, weight and speed requirements, 

our Wild Bobcat was modified from a commercial RC model 

monster truck, the Traxxax X-MAXX, as shown in Figure 1. In 

order to satisfy the length requirement of no more than 0.75 m, 

the wheelie wheel in the back of the vehicle was removed. 

Three cameras, one 2D Lidar and two sonar sensors were also 

installed on the body shell, and an instrument panel was 

installed inside on the chassis. A custom made motor shaft 

encode was installed on the motor pinion gear. The total weight 

was controlled to be under 12 kg. The finished vehicle is shown 

in Section VIII. 

 

Figure 1. Traxxas X-MAXX 

III. ELECTRICAL AND ELECTRONICS DESIGN 

The electrical and electronics design includes power 

distribution and signal communications. Figure 2 shows the 

computing platforms, sensors, actuators, wireless 

communication antennas along with the power lines and signal 

communication protocols. It is noted that the wireless E-Stop 

transmitter and receiver are custom made. Also, the onboard e-

stop system includes a regenerative brake using a 3-phase 

rectifier and a bank of 12V/50W lightbulbs to quickly dissipate 

the vehicle’s kinetic energy when braking at high speed.  

IV. SYSTEM ARCHITECTURE 

The autonomous vehicle control system comprises three 

subsystems: (i) navigation (localization), (ii) cognitive control 

and (iii) motion control, as shown in Figure 3. Each subsystem 

will be described in the following sections. 
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Figure 2. Electrical and Electronics Subsystem Design 

 

 

Figure 3. Autonomous Vehicle Control System Architecture 

V. NAVIGATION (LOCALIZATION) SUBSYSTEM DESIGN 

The navigation subsystem consists of motion sensors and 

environment sensors. High-speed localization relies on the 

motion sensors, while autonomous driving operations, such as 

lane following, start/stop signaling and moving obstacle 

avoidance reply on the environment sensors. 

The Motion Sensor System includes GPS/INS (Inertial 

Navigation System and velocity encoder data processing. In 

practice, the onboard inertial sensors, like gyroscopes and 

accelerometers will have some bias. If these signals are used 

directly to calculate the orientation and position by integration, 

the results would drift because of the bias. Comparing to inertial 

sensors, GPS is much more accurate over time, but the data 

update frequency is lower than inertial sensors. The quadrature 

motor shaft encoder can be erroneous when vehicle is in 

dynamic motion due to wheel slipping and skidding, but 

provides relatively accurate velocity data when the vehicle is 

running at constant velocity.  

All of the on-board sensors data, like gyroscopes, 

accelerometers and encoder data update at 100 Hz, which 

ensure the high-speed localization. In this project, a 3DR GPS 

module with Ublox LEA-6H GPS chip is introduced. The 

accuracy is up to ±2 meters at 15 satellites fix and 1.0 HDOP. 

The update rate is 5 Hz. A bias removal function is applied to 

the inertial sensors, and a Kalman filter algorithm is employed 

for inertial and shaft encoder sensor data fusion. For outdoor 

operations, the GPS and magnetometer data are also fused in 

with the inertial and encoder data using the Kalman filter.  

The vision system is specifically designed for the IARRC 

competition. It consists of two parts: the lane detection algori-

thm that is primarily based on OpenCV and the object detection 

algorithm primarily that is based on TensorFlow Object 

Detection API.  

The lane detection algorithm is different from the standard 

Hough Transformation, which runs in cubic time complexity 

and is not applicable in real time system [1] [2]. Three lookout 

range lines that mark 1m, 2m, 3m distance from the car are set 

for each frame. At each lookout range we detect the white color 

(left line), yellow color (right line), and magenta color (end 

line). Points are fitted into a linear function using 

scipy.stats.linregress for further reducing the noise and 

determining the left turn and right turn moves. The vision 

sensor data are first passed to an event generator. The output 

events then serve as the input to the cognitive state machine. 

Table 1 shows all the data detected in the vision system. 

The object detection algorithm is based on the Single Shot 

Detector Lite – MobileNet V2 model [3]. Pretrained SSDLite-

MobileNetV2 using the COCO dataset was downloaded from 

the TensorFlow Model Zoo. Such model was retrained to detect 

red/green traffic light and cones.  
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Figure 4. Example of detected lanes and objects. 

Table 1. Vision data and event generation 

 

VI. COGNITIVE SUBSYSTEM DESIGN 
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Figure 5. Cognitive Control Subsystem. 

 

Cognitive state machine. The overall cognitive control 

system is shown in Fig. 5, where “left/right” refer to the driver’s 

left/right. The event-driven cognitive state machine which is a 

Mealy state machine conducts the high level decision. The 

events which are the output of the environment sensor system 

serve as the input to the cognitive state machine. The events 

together with the current state determine the state transition. 

The output logic sets the appropriate value to the outputs 

according to the current state and input.  

The events that passed to the cognitive state machine are 

labeled with numbers as shown in the following tables. 

 

 

Figure 6. Principle of a Mealy machine 

The state of the system is represented by a 5-digit decimal 

number of the form (Traveling mode, Turn, Car avoidance, Car 

chasing, Course selection). Each digit represents the value of a 

specific state variable.  

Table 2. Cognitive events 

Event 

class 

Event (Input) 

Light 0 - Green Light  

Side line 1 - Only left line  

2 - Only right line 

3 - Left line close 

4 - Right line 

close 

Shortcut 5 - Shortcut 
entrance 

6 - Shortcut exit 

Horizontal 

line 

7 - Horizontal left 

line (1m, 2m, 3m) 

8 - Horizontal 

right line (1m, 

2m, 3m) 

9 - Finish line 
(1m, 2m, 3m) 

Other cars 

in the 
course 

10 - Left car  

11 - Right car 

12 - Front car  

Table 3. Cognitive states 

State 

Variable 

Value 

Traveling 

mode 

0 - Ready 

1 - Go 

2 - Finish 

Turn 0 - No turn 

1 - Left turn  

2 - Right turn 

Car 

avoidance 

0 – No car 

1 - Left car 

avoidance  

2 - Right car 
avoidance  

3 - Front car 

avoidance 

Car 
chasing 

0 - No chasing 

1 - Chasing 

Course 

selection 

0 - Normal  

1 - Go shortcut 

Lap 

number 
counter 

n - Up to N laps 

The outputs of the state machine are listed as following. The 

output is represented by a 4-digit decimal number of the form 

(Direction mode, Speed limit level, Lookout range level, 

Waypoint selection scenario). 

An example for the state transition of the cognitive state 

machine is shown in Fig. 6, where the car starts to run when the 

traffic light is switched to green, then it takes a sharp right turn 

Source Data Data Format Trigged event 

Front 

camera 

Left_line_point  Float Only left line, 

Only right line, 

Both lines 
Right_line_point 

Finish_line_distance Finish line (1m, 

2m, 3m) 

H_left_line Horizontal left line 

(1m, 2m, 3m) 

H_right_line Horizontal right 

line (1m, 2m, 3m) 

Left_cone Shortcut entrance 

(1m, 2m, 3m), 
Shortcut exit (1m, 

2m, 3m) 

Right_cone Shortcut entrance 
(1m, 2m, 3m) , 

Shortcut exit (1m, 

2m, 3m) 

GreenLight Boolean Green Light 

Left 

camera 

Left_line_distance Float Left line close 

Right 

camera 

Right_line_distance Right line close 

input/output Current 
state 

Next 
state 
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when a horizontal left line is detected. After the car goes back 

to the straight course, it passes a front car. After the car runs 

two laps, the car stops at the finish line. In the Fig 7, the capital 

E, S and O represents the event, the state and the output, 

respectively. The resulted state transition is: S00000 → S10000 

→ S12000 → S10000 → S00300 → S10000 → n+1 → S10000 

→ S12000 → S10000 → S20000. 

 

Output variable  Value 

Direction Mode 0 - Forward 

1 - Stop 

2 - Reverse 

Speed Limit level 0 - Slow 

1 - Medium 

2 - Fast 

Lookout Range level 0 - Near 

1 - Medium 

2 - Far 

Waypoint selection 
scenario 

0 - Both lines 

1 - Only left line  

2 - Only right line 

3 - Horizontal left line 

4 - Horizontal right line 

5 - Left car  

6 - Right car  

7 - Front car 

8 - Between cones 

9 – No way out 

Table 4. Cognitive outputs 

20000
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No 
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O0220
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Figure 7. The state transition diagram for the example 

Path Planning. The path planner is responsible for 

generating a feasible, collision free path that leads the vehicle 

to the target. In our design, the path planner produces the 

waypoints based on the output of the cognitive state machine. 

As an example, consider the following two different driving 

scenarios: driving without other cars in the course and driving 

with other cars in the course, which are shown in the following 

Fig 8. Scenario 1 consists of 2 sub-scenarios: the case when two 

boundary lines can be seen by the camera and the case when 

only one line can be seen.  

Consider the scenario that no car is in sight. If both of the 

boundary lines are in the view of the camera, then the waypoint 

is simply taken as the middle point of the intersections of the 

lookout range line and the boundary lines. If only one boundary 

line is in the view, for instance, the left line, then the waypoint 

is taken on the lookout range line on the right of the left line 

with a proper distance. In the scenario that there are other cars 

in sight, the way point is properly taken between the lines and 

the other cars to allow the car to go through without collisions. 

If there is no sufficient space to overtaken the front car, then the 

speed of the vehicle is reduced and the chasing state is entered. 

2 lines in the view 1 line in the view

Other cars in the course

Driving Scenarios

Waypoint

Waypoint

No car in the course

Lookout 

range line

Lookout 

range line

Waypoint

Lookout 

range line

 

Figure 8. Path planning Scenarios 

Path-to-trajectory conversion. The path-to-trajectory 

converter is used to assign a feasible velocity profile along the 

path and thus convert it to a nominal trajectory. Out optimality 

objective for velocity assignment is to minimize the traveling 

time of the car to reach the goal. Also, the path-to-trajectory 

conversion must be subject to both the kinematics and 

dynamics constraints of the car. The traditional approach is 

formulating the path-to-trajectory conversion as a free-ending-

time optimal control problem. However, the corresponding 

computing time is usually too long to satisfy the real-time 

requirement.  

By the dimension of the Wild Bobcat, the competition 

course (including the shortcut) is sufficiently wide for the car 

to drive without needing backups. Therefore, after the path 
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planner determines the waypoints in the course properly, a fast 

line-of-sight pure pursuit guidance (LOS PPG) [4] is adapted to 

conduct the trajectory tracking guidance. LOS PPG has been 

used in aircraft guidance design. By taking into account the 

nonholonomic constraint, as well as the constraints on the linear 

and angular velocities, linear and angular accelerations, and the 

curvature, we modified LOS PPG to generate a feasible 

trajectory for car-like ground vehicles. The LOS PPG trajectory 

generator consists of four subsystems, including target seeker, 

heading guidance, speed guidance and trajectory synthesizer, as 

shown in Fig 9.   

 

 

Figure 9. LOS PPG Trajectory Generation Architecture 

The simulation results are shown in Section V. 

Mapping. By using the data from the environment sensors 

and the motion states from the motion sensors, the mapping 

system updates the global map in the memory and retrieves a 

local map for the cognitive control purpose. The map is 

internally represented by a grayscale bitmap of range from 0 to 

100, where each pixel corresponds to an inertial coordinate. For 

each type of the objects, the pixels are assigned to a pre-defined 

grayscale as shown in the following table. 

VII. MOTION CONTROL SUBSYSTEM DESIGN 

3 Degree-of-Freedom (DOF) motion may be categorized as 

path-following and trajectory-tracking. Path-following only 

requires the vehicle to follow a specified path without time 

constraints. Thus, path-following controller systems only need 

to deal with vehicle kinematics. In contrast, trajectory-tracking 

control systems require the vehicle to traverse a prescribed path 

with a given velocity. Trajectory-tracking is more challenging 

than path-following because the vehicle dynamics must be 

considered in addition to vehicle kinematics. For an under-

actuated, nonholonomic car-like ground vehicle trajectory 

tracking Guidance, Navigation, and Control (GNC), we 

consider the 3DOF nonlinear vehicle rigid-body dynamics with 

nonlinear tire tracking force, nonlinear drag force and actuator 

dynamics [5]. Conventional automatic motion controllers for 

cars use separate controllers for steering and throttle, which 

tends to limit the performance potential of the vehicle. In order 

to effectively cope with the nonlinear and time-varying nature 

of ground vehicle motion control. conventional systems may 

use what is known as a Model Predictive Control (MPC) 

technique. MPC runs a simulation of the vehicle motion with 

currently computed controller gains. MPC performs an on-line 

optimal control design to obtain a new set of gains, and repeats 

the process at every control decision step, typically between 50 

and 100 times per second. Such controllers are extremely time 

consuming yet with limited performance and a lack of stability. 

Compare to MPC, TLC is high computational efficiency and 

effectiveness for high-order nonlinear plant. The controller 

design has been filed an international patent application under 

the PCT.   

Object Grayscale 

Unexplored area 0 

Explored free area 10 

Traffic light 20 

Start line 30 

Finish line 40 

Left line 50 

Right line 60 

Shortcut entrance 70 

Shortcut exit 80 

Cone 90 

Path 100 

Table 5. Grayscale table for the objects 

The control algorithm employs Trajectory Linearization 

Control (TLC) based on singular perturbation theory. TLC is a 

model-based controller, and it provides a nonlinear time-

varying controller that combines nonlinear dynamic inversion 

(nominal controller) with linear time-varying feedback 

stabilization (feedback controller), as shown in Fig 10. The 

nominal controller approximately cancels the plant 

nonlinearity, thereby reducing the tracking error to 

facilitate linearization of the nonlinear tracking error 

dynamics. The linearized error dynamics are then 

exponential stabilized using time-varying Proportional-Integral 

(PI) state feedback control law. A TLC based controller can be 

viewed as the gain-scheduling controller that is designed at 

each point on the trajectory to provide robust stability. 
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Figure 10. TLC structure 

The overall closed-loop system consists of 4 loops as shown 

in Fig 11, which are the guidance outer and inner loop, and 

steering outer and inner loop. Each loop employs the TLC 

structure as shown in Fig 10. 

The high speed control algorithm is running on the 

Quanser’s  HiQ Aero microcontroller with a Gumstix Verdex 

CPU running at 0.6 GHz. It equipped with a 3-axis 

accelerometer, 3-axis gyroscope, 3-axis magnetometer, 1 TTL 

serial GPS port, and 10 channels PWM output. The real-time 

control software Quarc generates real-time code for Gumstix 

Verdex directly from Matlab/Simulink®. The on-board sensor 

data and controller gains update at 100 Hz, which satisfy the 

high speed trajectory tracking performance.  

 

 

Figure 11. 3DOF Trajectory Linearization Controller Block 

Diagram. 

The guidance subsystem which generates a feasible 

trajectory for the trajectory tracking controller is running on a 

NVIDIA TX1 board. The generated trajectory is sending to the 

HiQ through a serial communication port at 10Hz. Since the 

different sampling times running on two boards, a low-to-high 

data interpolation preprocessing is running on HiQ in order to 

get a smooth trajectory.  

The hardware tuning procedure is separated into two steps: 

the nominal controller tuning and the feedback controller 

tuning. The dynamics (bandwidth) of the nominal controller is 

designed based on the desired bandwidth of the open-loop 

controlled system. The guidelines for designed feedback 

controller gains are: 1) the closed-loop bandwidth of the 

innermost-loop is at least three-time smaller than the actuator’s; 

2) an outer-loop closed-loop bandwidth is at least three-time 

smaller than its immediate inner-loop; 3) the bandwidth of the 

outer-most position loop should satisfy position error transient 

requirement. Here are some trajectory tracking hardware test 

results. 

VIII. EXPERIMENTAL RESULTS 

A. Vehicle Subsystem 

The finished vehicle is shown in Fig 12 below. It is under 

12 kg with a maximum speed of 10 m/s. The E-stop button is 

on top of the vehicle. 

 

 

 

Figure 12. Vehicle Subsystem 

B. Electrical and Electronics Subsystem 

The finished electrical and electronics panel is shown in Fig 

13, along with the wireless E-stop transmitter. 

 

Figure 13. E-E Panel and E-stop Transmitter 
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C. Navigation (Localization) Subsystem 

Fig 14 shows a sensor fusion test result with GPS, INS 

(accelerometer and gyroscope) and shaft encoder. The result is 

overlaid to Google Earth map with adequate accuracy. Fig 15 

shows the vision subsystem test results with traffic light in 

difficult lighting conditions, white lines and orange cones, 

respectively. The detection speed is deemed adequate. 

 

Figure 14. GPS/INS Test result shown on Google Earth 

 

 

Figure 15. Vision detection (light, cone, line) 

D. Cognitive Control Subsystem  

Figs 16-17 show the computer simulation of the shortcut 

completion scenario and a high-speed LOS PPG scenario. The 

results verified the design with high level of confidence. 

E. Motional Control Subsystem 

Figs 18-20 show trajectory tracking control hardware test 

performed on a Traxxas E-MAXX vehicle for a 4-pedal rose-

curve trajectory at 2 m/s and circular trajectory at 5 m/s. Since 

the TLC control algorithm is readily scalable, these results give 

us high confidence for application on the larger X-MAXX.  

 

 

Figure 16. Path Planning in the shortcut. 

 

Figure 17. Simulation test of LOS guidance. 

 

Figure 18. Rose: Vehicle Trajectory 

 

Figure 19. Rose: Position and Velocity Tracking Response 
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Figure 20. Circle: Vehicle Trajectory 

 

Figure 21. Circle: Position and Velocity Tracking Response 

IX. INNOVATIONS 

This project encompasses several innovations. A novel bio-

psychically inspired cognitive autonomous control architecture 

[6]. The navigation (localization) employs sensor fusion with a 

Kalman filter to enable inexpensive sensors for accurate and 

high-speed operations. Machine vision system employs 

advanced deep-learning neural network algorithms for object 

identification with good results.  The mission trajectory 

planning system is constructed by using a line-of-sight pure 

pursuit guidance trajectory generator [1] and a switching 

control based path planner [3]. A PCT patent application has 

been filed for the former, and a US provisional patent 

application has been filed for the latter.  A 3DOF Trajectory 

Linearization Controller for non-holonomic car-like vehicles is 

implemented for simultaneous and precise high-speed drive and 

steering control [2] [4]. The control algorithm is based on 

nonlinear vehicle and tire dynamic models. Therefore it has 

good scalability and adaptability. An international patent 

application under the PCT had been filed for the control 

algorithm. 

X. CURRENT STATUS AND FUTURE WORK 

At this time the vehicle construction is complete, and 

critical subsystems have been tested. In the remaining time 

before the competition, integrated tests under the completion 

scenarios will be conducted.  
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