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Abstract—This document details the design of UBC       

Snowbot’s entry into the 2018 International Autonomous Robot        

Racing Challenge (IARRC). It will review the conceptual design         

of the robot along with its components, and how this design aims            

to address the main challenges of the competition. 

I. INTRODUCTION 

UBC Snowbots is a student design team based at the          

University of British Columbia that focuses on autonomous        

robotics. We are an interdisciplinary team comprised of        

dedicated undergraduate students from various departments      

and faculties including Computer Science, Electrical      

Engineering, Computer Engineering, Mechanical Engineering,     

and Engineering Physics. Our team’s goal is to allow members          

of all skill levels to learn and develop technical and leadership           

skills through solving challenges posed in autonomous       

robotics.  

II. MECHANICAL 

The mechanical component of our design is based on an          

off-the-shelf RC car. The drivetrain of the vehicle has a DC           

motor driving the two rear wheels, and a servo controlling the           

front wheels for steering. The drivetrain also includes a         

suspension system that is useful for mechanically stabilizing        

the camera and LIDAR images. A 16:90 gear ratio is used           

from the motor to the drive shaft to help ensure compliance           

with the maximum allowed vehicle speed. 

The original chassis of the car has been removed and the           

frame modified to fit our sensors and processing unit. Notable          

additions include a custom steel plate base to hold the main           

processing unit, an Intel NUC. Also mounted on this plate are           

two towers - one for our camera to provide it with a better             

field of view, and another for our mechanical e-stop to ensure           

it meets the safety requirements of being 30 cm above ground.  

III. ELECTRICAL 

A. Power System 

All the components of the vehicle are powered by a single           

2000mAh 7.4V lithium polymer (Li-Po) battery. Our main        

processing unit, an Intel NUC, is powered from the battery via           

a transformer, which converts the battery voltage to the         

requisite voltage for the NUC. The battery also powers the          

motor by way of an Electronic Speed Controller (ESC). 

The power to the motors is directed through a wireless          

e-stop and a physical e-stop which are both normally open. If           

a failure is to occur in either of the e-stops or if either of them               

are switched on, power to the motor will be immediately cut. 



 

Power Diagram 

B. Sensors 

Our vehicle uses a Hokuyo URG-04LX-UG01 LIDAR and        

fisheye camera to navigate. The fisheye camera is used for line           

and stoplight detection, while the the LIDAR is used to detect           

other vehicles and cones. There is also an optical encoder on           

the rear wheel axle which is used for PID control in the            

firmware. 

 

Sensor Diagram 

C. Firmware 

The onboard NUC connects to an Arduino Nano via a USB           

serial interface. The high level control software on the NUC          

sends linear and angular velocity messages to the Nano, which          

translates them into PWM signals for both the servo motor to           

control the steering, and the ESC to control the driving motor.           

The Nano also implements a PID controller to guide the PWM           

signals. 

IV. SOFTWARE 

All computing is done on an Intel NUC [0] with a Celeron            

processor, 8GB of RAM, and a 128GB SSD. The two          

principal inputs to our system are the video stream from the           

camera, and the pointclouds from the LIDAR. Our software         

stack is built on the Robot Operating System (ROS)         

Framework [1] which allows multiple executables to       

communicate over a TCP/IP protocol. This decoupling       

between different components allows for independent      

development and validation. 

V. COMPETITION OBJECTIVES 

A. High Speed Vehicle Localization 

To localize the vehicle to the course, we first use the image            

data from the fisheye camera. The raw image is first rectified           

to account for distortion of the camera lense. Using the known           

angle of the camera, an Inverse Perspective Mapping (IPM)         

filter is then applied to translate this image to a birds eye view.             

The course boundaries are then filtered for by passing this          

translated image through Hue, Saturation, and Value (HSV)        

filters, which provide a more robust colorspace for filtering         

then the more common RGB colorspace. The result of this is a            

binary image outlining the lane boundaries relative to the         

vehicle. 

[0] – https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html  
[1] – http://www.ros.org/ 
[2] - https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d  

https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.ros.org/
https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d
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B. High Speed Vehicle Control 

To control the vehicle, we first abstract the lane boundaries          

as polynomial lines by applying the sliding window method to          

the binary image obtained in the previous section. 

 

[2] 

Using this abstracted interpretation of the lane boundaries,        

we are then able to find the intersection of polynomials to           

determine the “vanishing point” of the lane from the robot’s          

perspective. Separate PID loops within the firmware are then         

used to control the linear and angular velocity outputs to send           

to the motors. 

C. Start/Stop Light Detection 

The start and stop lights are detected similarly as the lane           

boundaries are. The raw camera image is rectified to account          

for lense distortion, then the HSV filter is applied to the           

corrected image to find the colors of interest, red or green. The            

contours of this filtered image are then found, and a circle           

fitting algorithm is applied to check if a circle of the           

appropriate size is present, indicating that the specific light is          

present from the vehicle's view. 

D. Collision Avoidance 

Our LIDAR is the principle input for our collision         

avoidance algorithms. From the pointcloud produced by the        

[0] – https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html  
[1] – http://www.ros.org/ 
[2] - https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d  

https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.ros.org/
https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d


LIDAR, obstacles are detected via clustering. If an obstacle of          

sufficient size is found to be within the projected path of the            

robot, we override other steering commands to take immediate         

evasive action. 

VI. SOFTWARE VALIDATION 

A rigorous and multi-level software validation strategy       

was taken to ensure correctness of the software outlined in          

previous sections. Firstly, all code was thoroughly unit tested         

at a per-function and per-class level. Secondly, the decoupled         

nature of ROS allowed us to write higher level integration          

tests to provide both individual components and groups of         

components with test input sensor data, and to validate the          

correctness of the resultant steering outputs. On top of this,          

physical testing was undertaken (as later described in this         

document), and all code was passed through a review process          

with several senior software members. 

VII. MECHANICAL VALIDATION 

Mechanical changes were validated principally via direct       

vehicle control over courses similar to those of the         

competition. During these tests, both vehicle speed and        

stability were assessed and found to be satisfactory, despite         

additional weight added via the metal plate, tower, and         

electronics. There was a predicted reduction in top speed, but          

it remains well above the level required by our software          

system. 
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https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.ros.org/
https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d

