
 Olaf 3.0 Design Report
UBC Snowbots – University of British Columbia

 Raad Khan ~ Electrical Engineering
Gareth Ellis ~ Computer Science

Marinah Zhao ~ Computer Engineering
Valerian Ratu ~ Computer Engineering
Vincent Yuan ~ Electrical Engineering

Abstract—This document details the design of UBC

Snowbot’s entry into the 2018 International Autonomous Robot

Racing Challenge (IARRC). It will review the conceptual design

of the robot along with its components, and how this design aims

to address the main challenges of the competition.

I. INTRODUCTION

UBC Snowbots is a student design team based at the

University of British Columbia that focuses on autonomous

robotics. We are an interdisciplinary team comprised of

dedicated undergraduate students from various departments

and faculties including Computer Science, Electrical

Engineering, Computer Engineering, Mechanical Engineering,

and Engineering Physics. Our team’s goal is to allow members

of all skill levels to learn and develop technical and leadership

skills through solving challenges posed in autonomous

robotics.

II. MECHANICAL

The mechanical component of our design is based on an

off-the-shelf RC car. The drivetrain of the vehicle has a DC

motor driving the two rear wheels, and a servo controlling the

front wheels for steering. The drivetrain also includes a

suspension system that is useful for mechanically stabilizing

the camera and LIDAR images. A 16:90 gear ratio is used

from the motor to the drive shaft to help ensure compliance

with the maximum allowed vehicle speed.

The original chassis of the car has been removed and the

frame modified to fit our sensors and processing unit. Notable

additions include a custom steel plate base to hold the main

processing unit, an Intel NUC. Also mounted on this plate are

two towers - one for our camera to provide it with a better

field of view, and another for our mechanical e-stop to ensure

it meets the safety requirements of being 30 cm above ground.

III. ELECTRICAL

A. Power System

All the components of the vehicle are powered by a single

2000mAh 7.4V lithium polymer (Li-Po) battery. Our main

processing unit, an Intel NUC, is powered from the battery via

a transformer, which converts the battery voltage to the

requisite voltage for the NUC. The battery also powers the

motor by way of an Electronic Speed Controller (ESC).

The power to the motors is directed through a wireless

e-stop and a physical e-stop which are both normally open. If

a failure is to occur in either of the e-stops or if either of them

are switched on, power to the motor will be immediately cut.

Power Diagram

B. Sensors

Our vehicle uses a Hokuyo URG-04LX-UG01 LIDAR and

fisheye camera to navigate. The fisheye camera is used for line

and stoplight detection, while the the LIDAR is used to detect

other vehicles and cones. There is also an optical encoder on

the rear wheel axle which is used for PID control in the

firmware.

Sensor Diagram

C. Firmware

The onboard NUC connects to an Arduino Nano via a USB

serial interface. The high level control software on the NUC

sends linear and angular velocity messages to the Nano, which

translates them into PWM signals for both the servo motor to

control the steering, and the ESC to control the driving motor.

The Nano also implements a PID controller to guide the PWM

signals.

IV. SOFTWARE

All computing is done on an Intel NUC [0] with a Celeron

processor, 8GB of RAM, and a 128GB SSD. The two

principal inputs to our system are the video stream from the

camera, and the pointclouds from the LIDAR. Our software

stack is built on the Robot Operating System (ROS)

Framework [1] which allows multiple executables to

communicate over a TCP/IP protocol. This decoupling

between different components allows for independent

development and validation.

V. COMPETITION OBJECTIVES

A. High Speed Vehicle Localization

To localize the vehicle to the course, we first use the image

data from the fisheye camera. The raw image is first rectified

to account for distortion of the camera lense. Using the known

angle of the camera, an Inverse Perspective Mapping (IPM)

filter is then applied to translate this image to a birds eye view.

The course boundaries are then filtered for by passing this

translated image through Hue, Saturation, and Value (HSV)

filters, which provide a more robust colorspace for filtering

then the more common RGB colorspace. The result of this is a

binary image outlining the lane boundaries relative to the

vehicle.

[0] – https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
[1] – http://www.ros.org/
[2] - https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d

https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.ros.org/
https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d

[2]

B. High Speed Vehicle Control

To control the vehicle, we first abstract the lane boundaries

as polynomial lines by applying the sliding window method to

the binary image obtained in the previous section.

[2]

Using this abstracted interpretation of the lane boundaries,

we are then able to find the intersection of polynomials to

determine the “vanishing point” of the lane from the robot’s

perspective. Separate PID loops within the firmware are then

used to control the linear and angular velocity outputs to send

to the motors.

C. Start/Stop Light Detection

The start and stop lights are detected similarly as the lane

boundaries are. The raw camera image is rectified to account

for lense distortion, then the HSV filter is applied to the

corrected image to find the colors of interest, red or green. The

contours of this filtered image are then found, and a circle

fitting algorithm is applied to check if a circle of the

appropriate size is present, indicating that the specific light is

present from the vehicle's view.

D. Collision Avoidance

Our LIDAR is the principle input for our collision

avoidance algorithms. From the pointcloud produced by the

[0] – https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
[1] – http://www.ros.org/
[2] - https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d

https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.ros.org/
https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d

LIDAR, obstacles are detected via clustering. If an obstacle of

sufficient size is found to be within the projected path of the

robot, we override other steering commands to take immediate

evasive action.

VI. SOFTWARE VALIDATION

A rigorous and multi-level software validation strategy

was taken to ensure correctness of the software outlined in

previous sections. Firstly, all code was thoroughly unit tested

at a per-function and per-class level. Secondly, the decoupled

nature of ROS allowed us to write higher level integration

tests to provide both individual components and groups of

components with test input sensor data, and to validate the

correctness of the resultant steering outputs. On top of this,

physical testing was undertaken (as later described in this

document), and all code was passed through a review process

with several senior software members.

VII. MECHANICAL VALIDATION

Mechanical changes were validated principally via direct

vehicle control over courses similar to those of the

competition. During these tests, both vehicle speed and

stability were assessed and found to be satisfactory, despite

additional weight added via the metal plate, tower, and

electronics. There was a predicted reduction in top speed, but

it remains well above the level required by our software

system.

[0] – https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
[1] – http://www.ros.org/
[2] - https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d

https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.ros.org/
https://chatbotslife.com/self-driving-cars-advanced-computer-vision-with-opencv-finding-lane-lines-488a411b2c3d

