
IARRC 2018 Design Report

Véhicule Autonome Université Laval (VAUL)

Abstract— This report presents Phantom, the autonomous
RC car conceived by the Véhicule Autonome Université Laval
(VAUL) project. Its physical and software design are described.
The key algorithms used to meet the IARRC competition
objectives are explained. Experiments demonstrate that the car
is safe and fully capable of competing in the drag race. We lay
down the milestones left to achieve full competitiveness by next
year.

I. INTRODUCTION

Since its inception in the summer of 2017, the Véhicule
Autonome Université Laval (VAUL) project has been hard at
work to design and manufacture a fully capable autonomous
RC car. The enthusiasm of both graduates and undergrad-
uates from the Science and Engineering faculty, along with
the support from professors François Pomerleau and Philippe
Giguère from the Computer Science department, has allowed
us to make significant progress to this end. Our efforts came
to fruition, and we are proud to present our vehicle Phantom
at IARRC 2018.

This report documents how we designed our vehicle
for the drag race challenge, as well as some future plans
to implement the more challenging circuit race. We hope
this incremental approach will allow us to learn from our
participation at IARRC 2018 and present a fully competitive
vehicle next year.

We first review the physical design of our vehicle (sec-
tion II), before discussing the software architecture we
embedded on it (section III). We describe how we meet
the IARRC competition challenges in section IV. Finally,
section VI concludes the report and describes some of the
challenges which VAUL will face further down the road.

II. HARDWARE DESIGN

The hardware design of Phantom is based of a Desert
Buggy XL-E (see figure 2), which by itself is a highly capa-
ble RC car. We heavily modified the platform to embed our
sensors and equipment on it. This section first describes the
hardware we mounted on the vehicle, before describing our
implementation of the security requirements of the competi-
tion. Then we describe our sensors in more details. Finally,
we graduate to more high level hardware considerations such
as vehicle status monitoring, the computer systems mounted
on the vehicle, and how these devices communicate through
networking.

A. In a nutshell

Phantom is equipped with the following items:
• Dynamite Fuze 1/5 6-pole brushless motor (800kV)
• (x2) 5000 mAh 22.2V LiPo batteries 6S

• S900S steering servo
• SRS4220 RF receptor 2.4GHz
• VESC electronic speed controller
• STM32F407 board data acquisition system
• Jetson TX2 on board computer
• (x2) DC Converter 5/12VDC 5A
• Archer C7 dual-band Wi-Fi router.
• RSX-UM7 Orientation sensor
• Leopard Imaging IMX185 camera

B. Security systems

1) Mechanical E-Stop: A mechanical E-Stop button is
mounted on the top of the vehicle at a height of more than
30 cm. Figure 3 shows the button. When pressed, it cuts the
motor’s power supply. To re-activate it, one needs to twist the
button counterclockwise. A red status LED indicates whether
the motors are armed or not.

2) Wireless E-Stop: We re-purpose the RC transmitter
shipped with the Desert Buggy XL-E as a dead man’s switch.
This is a low cost alternative to an off the shelf remote E-
Stop button. When the throttle button is pressed, the vehicle
can receive commands. When it is released, the vehicle
immediately brakes. This provides additional security, since
the vehicle now needs two operators: one that connects to
the vehicle via Wi-Fi and sends commands, and another
that monitors the vehicle behavior and holds the dead man’s
switch.

Please note that in autonomy scenarios, this RC transmitter
cannot be used to control the vehicle and acts solely as a dead
man’s switch.

3) Maximum speed limitation: The maximum speed limit
is guaranteed by several sub-systems with their own respon-
sibility. First, the electronic speed controller is limited by
a maximum RPM value for brushless motor (BLDC) drive.
Using the gear ratios and the size of the wheels, we can use
this RPM limitation to respect the 10 m/s requirement of the
competition.

Another way to is the battery pack selection. We used a
LiPo battery 6S to power brushless motor which limits the
maximum speed. Finally, the embedded regulator (PID) on
STM32F4 is limited at 10 m/s. If the regulator was to receive
a higher speed, it would automatically bring it down to an
acceptable command.

C. Sensors

This section describes the variety of sensors integrated into
our vehicle.



Fig. 1. Group photo!

Fig. 2. Desert Buggy XL-E

Fig. 3. Mechanical E-Stop. The motor power status is indicated by the red
LED visible on the bottom of the figure.

1) Camera: We use the Leopard Imaging IMX185. It
can capture 1080p videos at 60FPS. Since it is a solid-state
camera, the is no rolling shutter effect in captured videos. In
practice, we only use a 720p resolution because it is sufficient
for both line detection and cone detection applications. It
can be connected to the TX2 (see section II-E) for maximal
performance.

The exposition time of the camera is adjusted automati-
cally by its driver on the on-board computer.

2) Odometry: We mounted two quadrature encoders made
with custom 3D printed parts on the rear wheels of Phantom.
The parts consist of a press fit wheel gear, an encoder support
and a second gear to drive encoder (ratio 3.6:1). The parts are
seen in Figure 4. The modular incremental encoder has 2048
quadrature resolution and the quadrature signal increments a
hardware counter is embedded on the data acquisition board.
The latter has a real-time thread that computes the speed of
the vehicle at a 100Hz frequency for each rear wheel.

Fig. 4. 3D printed Wheel encoder support for quadratic encoder

3) Sonar range sensor: We began the design of a low
range obstacle detection system (2-3m) around our vehicle
with 8 low cost sonars. This feature is necessary for the
circuit challenge to detect other vehicles and have an avoid-
ance strategy. We selected the Paralax 28015 sensor with
20° horizontal and 30° vertical angles of detection.

4) IMU: The UM7 Orientation Sensor is an Attitude and
Heading Reference System (AHRS) that contains a three-axis
accelerometer, rate gyro and magnetometer which commu-
nicate through a USB interface with the onboard computer.



It combines this data using an Extended Kalman Filter
(EKF) to produce better estimates. A ROS node handles EKF
parameters and publishes the estimate data.

D. Monitoring

Figure 5 represents three three LCD displays which we
use for monitoring. On the larger display, the embedded
system shows information such as current vehicle operation
mode, speed, battery status and encoders status. The two
other displays give real-time current and voltage information
about the voltage converters. This debugging information is
a crucial help during development.

Fig. 5. LCD displays on the side of the vehicle

E. Computer systems

There are three embedded computers on Phantom.
The first one is a low-level controller programmed on

a STM32F4 micro-controller as Master/Slave model with
the high level computer (master). It is responsible for the
acquisition of the data from the encoders, sonar sensors and
RF receiver. It displays on-board information to the LCD
and drives a red light to indicate vehicle status. It is also
responsible for driving the second on-board computer, an
Electronic Speed Controller (ESC) that exclusively deals
with driving the brushless motor and the steering servo.

The last computer is an NVIDIA Jetson TX2 prototyping
board. It is responsible for the high-level operation of the
vehicle, such as planning and vision. It runs Robot Operating
System (ROS) automatically at boot. The overall software
architecture that we programmed on it is discussed in sec-
tion III. The Jetson is interfaced with the low-level controller
using a serial connection. It is also connected directly to the
camera. Its embedded GPU allows use to do quick image
processing, for tasks such as line or cone detection. The
GPU also allows us to use deep neural networks into our
pipeline, as discussed in subsubsection IV-A.2. Since the
camera outputs images directly into the GPU memory of the
Jetson, we avoid the latency associated with data transfers
to the GPU.

F. Networking

We mount a TPLINK AC1750 router directly on the
vehicle. The router emits its own Wi-Fi, so we never have
to worry about the vehicle getting out of the range of a base
station. SSH access to the on-board computer is possible
through this network. This configuration allows for an easy
access to the software.

III. SOFTWARE DESIGN

The software architecture of Phantom is articulated around
ROS [6]. It helps us manage the different information coming
from sensors or algorithms, and helps with the separation of
concerns in software design. ROS provides libraries and tools
that we used to develop the software solution for our car. The
information in this framework is represented in messages
that have a specified format and then sent to a topic, which
other programs or algorithms can read and use. This lets us
manage all the information that we need for the race car in
an efficient way.

A. ROS Nodes

In ROS we designed two nodes that are worth mentioning
here. Firstly, there is the phantom_base node that man-
ages the interactions with the vehicle’s on-board controller.
This node is in charge of sending commands to the wheels
and receiving data from the sensors that are not directly in-
terfaced to the on-board computer. The second node is called
drag_race and is basically a state machine that manages
the high-level task. It subscribes to the pertinent information
from our various sensors by subscribing to the messages from
smaller nodes such as traffic_light_detector and
line_detector. It ensures that the vehicle drives straight
and safe until we reach the finish line.

One of the main advantages of using ROS is code
reuse. In the future we will design a new node called
circuit_race that will simply replace the drag_race
node, while reusing all the other nodes underneath. We will
have to replace only the high level behavior, mainly to
incorporate collision avoidance and a more intelligent path
planning.

B. Gazebo simulation

It is important to test algorithms before running them
on the actual car. To this end, we used Gazebo simulation
[1]. Gazebo is a simulation tool that uses ROS and that
supports several features that are important for this project.
For example, this simulator supports physics engines, sensors
and noise and all kinds of robot models. The model that we
use to simulate our car is the MIT race car model, which is
freely available on the Internet. Figure 7 shows a simulated
drag race.

Fig. 6. Simulated race car



Fig. 7. Simulated drag race

C. Remote control

A small node allows for the teleopration of the vehicle
through our own software instead of the off-the-shelf remote.
This proved useful to test the embedded systems in charge
of controlling the vehicle’s motors.

IV. MEETING THE 5 IARRC CHALLENGES

Using this hardware and software design, we were able
to make progress towards some of the five objectives of the
competition. This section how our hardware and software
innovations work together to meet them.

A. High-speed vehicle localization

There are three main components to our localization
pipeline: cone detection using a deep neural network, cone
measurement using classical algorithms and roadway line
detection.

1) Line detection: Figure 9 presents the pipeline used to
detect lines and position the vehicle relative to it. The first
part of the pipeline, in gray, is the image filtering. It is done
on GPU as it accelerates computations by a factor of 2 to
3 in our use case. Then, to map from pixel coordinates of
the binary mask to world coordinates, we use a perspective
transformed that has manually calibrated by measuring pixel
coordinates of four points that have knows 2D coordinates on
the XY plane. To eliminate outliers, we then use RANSAC
to fit a line on the projected points. The tight coupling
between our camera on-board computer, combined with the
presence of a GPU on that computer, allows us to run line
detection at around 20 Hz, which is essential to the stability
of our controller.

2) Cone detection: Our cone detection method is a two-
stage process. First, we use a neural network to have a rough
estimation of the location of the cones in the image. Then,
we use a classical computer vision technique to refine the
bounding boxes of the found cones.

The neural network is based on “SSD: Single Shot Multi-
Box Detector”[5] (see figure 8). It uses MobileNet [2] as
a feature extractor because it provides good performance
given a limited amount of computing power available on the
TX2. We used Huang et al.’s Tensorflow implementation. For
training, we fine-tune a model pre-trained on MSCOCO[4]
on cone bounding boxes that we manually annotated in video

300

300

3

VGG-16 
through Conv5_3 layer

19

19

Conv7
(FC7)

1024

10

10

Conv8_2

512

5

5

Conv9_2

256

3

Conv10_2

256 256

38

38

Conv4_3

3

1

Image

Conv: 1x1x1024 Conv: 1x1x256
Conv: 3x3x512-s2

Conv: 1x1x128
Conv: 3x3x256-s2

Conv: 1x1x128
Conv: 3x3x256-s1

D
et

ec
tio

ns
:8

73
2 

pe
r 
C

la
ss

Classifier : Conv: 3x3x(4x(Classes+4))

512

Conv11_2

Classifier : Conv: 3x3x(6x(Classes+4))

19

19

Conv6
(FC6)

1024

Conv: 3x3x1024

S
S

D

Extra Feature Layers

Conv: 1x1x128
Conv: 3x3x256-s1

Conv: 3x3x(4x(Classes+4))

Fig. 8. “SSD: Single Shot MultiBox Detector”. Figure from [5]l.

frames. To deploy the neural network, we use a custom build
of Tensorflow for the TX2 and load a frozen Tensorflow
graph1 in a ROS node.

3) Cone measurement: Even though the neural network
gives good estimates of the cones’ location, the bounding
boxes are not precise enough to project from image coordi-
nates to accurate 2D locations. The second stage of our cone
detection algorithm takes the approximate bounding boxes of
the cones as input and outputs their 2D location with respect
to the camera. This is done in multiple steps by a classical
computer vision algorithm. First, we extend each bounding
box to make sure the cone is fully visible. Then, we extract
an image patch for each one of them and smooth them using
a Gaussian blur with a 3x3 kernel to remove some noise. The
blurred patches are converted in the CIELAB color space for
a better color segmentation. A thresholding operation is done
using Otsu’s method on the mean of the a and b components
of the patches. The resulting binary image is then used for
finding contours. The largest one is assumed to be the cones’s
contour. In order to remove false positives, the candidates are
subject to a validation test which verifies the aspect ratio and
the area ratio of the contour.

Assuming the camera has been previously calibrated and
using the pinhole camera model, it is possible to compute
the distance between the object(cone) and the camera using
Thales’ theorem(or similar triangles):

distance(m) =
focallength(px) ∗ coneheight(m)

coneheight(px)

The angle between the optical axis and the line joining the
cone and the optical center can also be computed using basic
trigonometry:

angle = arctan(
conecenter(px)− imagecenter(px)

focallength(px)

In practice, the accuracy of the localization depends on the
size of the cone in pixels. It varies from several centimeters
to several meters. Therefore, we ignore cones that are less
than 20 pixels high.

4) Odometry: We combine the signal from our quadrature
encoders and the IMU to compute an estimate of the vehicle’s
displacement. This is used as an initial estimate for our other
localization algorithms.

1See http://www.tensorflow.org/extend/tool/_developers/#freezing.

http://www.tensorflow.org/extend/tool/_developers/#freezing


RANSAC

Canny Edge Detector

Dilate

Brightness Threshold

Dilate

AND

Perspective Transform

RGB image

Distance and angle relative to the line

Binary mask

Fig. 9. Line detection pipeline

B. High-speed vehicle control

The vehicle control has two components. The low-level
control lives on the embedded systems and is in charge of
driving the wheels and steering. This is used by the high-
level controller, which lives on the on-board computer. The
latter is in charge of sending the correct commands to the
low-level controller to complete the drag race and circuit race
challenges.

1) Low-level control: The brushless motor (BLDC) is
controlled by an ESC named VESC. This is an open source
project initiated by Benjamin Vedder. The ESC allows us
to control a brushless motor speed with Pulse Position
Modulation (PPM) signal from micro-controller (STM32F4).
The PPM signal to control speed may be switched with the
PPM output from RF module. It’s a simple way to separate
power supplies for motor and servomotor and other electronic
components. Other features like RPM limitation, command
speed mapping, battery management and steering powering
are implemented on this controller.

2) High-level control: Our high level controller is based
on Stanley Method [8]. It is the method used by Stanford
to win the 2005 DARPA Grand Challenge [7]. We choose
this method because it is easy to implement and gives good
results in both simulation and real world drag race context.

Figure 10 represents the geometry model used. Here is a
definition of the terms used in the figure:

path Path to follow, we want the vehicle to be exactly
on that line

cx, cy Closest point from the vehicle on the path
efa Signed distance between the vehicle’s front wheel

and the (cx, cy).
θe Signed heading error of the vehicle. Can be viewed

as the angle between the camera’s optical axis and
the path’s axis.

v Speed vector.
δ Steering command.
To determine the steering command δ at time t, there is a

simple formula:

δ(t) = k1θe(t) + tan−1(
k2efa(t)

vx(t)
) (1)

where k1, k2 are adjustable gain parameters.

Fig. 10. Geometry model used for control. Figure from [8].

This simple model achieves good results in simulation.
However, in real world scenarios, we found that the latency
on the computer vision pipeline made control unstable and
caused oscillations around the desired path. We are able to
reproduce this issue in simulation by introducing an artificial
delay on the simulated localization. To fix this problem,
we use predictive control in conjunction with the Stanley
Method. Instead of directly using the last observation of θe
and efa, we can use a locomotion model to estimate the true
position at time t + ∆t, where ∆t is the time passed since
the observation, and use this position in the controller.

We have a state vector

ut =

[
Vt
ωt

]
(2)

where Vt is the linear speed of the vehicle and ωt is its
angular speed at time t. Knowing the distance between the
front and back wheel L and the steering angle α, we can
compute the turn radius R and ωt using

R =
L

tanα
(3)

ωt =
L

tanα
(4)

Fixing the coordinate frame at the front of the vehicle
(meaning that xt, yt, θt are all 0), we can compute ut+1:

xt+1

yt+1

θt+1

 =

 Vt

ωt
sinωt∆t

Vt

ωt
− Vt

ωt
cosωt∆t

ωt∆t

 (5)

Given this position, we can find the new angle from the
line using θe− θt+1 . We can also compute the updated efa
by re-projecting xt+1, yt+1 the tangential line to the path at
(cx, cy).



In simulation, this predictive method did not improve the
stability of the control. We have two main hypotheses to
explain it:

1) We currently have only a rough estimate of the steering
angle α at a given time. It takes some time to the
servo to steer from an angle to another. This makes
the computation of ω inaccurate. In the future, we will
use an IMU to have a better measure of ω.

2) The Stanley Method is very sensitive to small oscilla-
tions of efa. In the future, we would like to experiment
the Pure Pursuit method [8] in conjunction with the
predictive control described above.

C. Stop light and roadway detection

Since we implemented only the drag race for this year,
there was no need for an explicit roadway detection. This
is one of our future objectives. However, we are proud to
report that our traffic light detection is operational.

1) Traffic light detection: To detect the start signal of
the traffic light, we begin by converting the current frame
into grayscale. We then apply a binary threshold operation
on the pixel intensities to highlight the brightest regions
of the image. A closing morphology operation is used in
order to close the remaining small holes inside these regions.
We can now find the contours using the resulting binary
image. At this stage, the list of detected contours should
contain the red (or green) light, but also possibly several
other contours. To reduce the number of potential candidates,
we filter the contours using multiple constraints (hierarchy,
area, roundness) to keep only those that look like a traffic
light.

To actually detect the start signal, namely the transition
from the red light to the green light, we need to keep track
of the filtered contours at each frame. As soon as one of
them is lost, we search in the consecutive frames for a new
one located below the old one. If that is the case, we send
a start signal to the system.

The algorithm suffers from the brittleness of classical
vision algorithms. However, it still produces great results
once the different thresholds have been correctly determined.

2) Finish line detection: We expect that our line detection
algorithm from section IV-A.1 will work just as well for
the purpose of finish line detection. The main challenge
is to apply the thresholding in some colorspace instead of
grayscale.

V. EXPERIMENTS

This section describes how we empirically validated our
vehicles behavior.

A. Simulation

We use our simulator to have a (partial) validation of our
controller. We register the control error during a simulated
drag race and validate that the controller is stable, at least in
simulation. An example drag race run can be visualized in
Figure 11. In this example, we skew the orientation of the
vehicle at the start and validate that the controller is able to

TABLE I
DECELERATION RESULTS

Speed (m/s) Braking distance (m)
Trial 1 Trial 2 Trial 3 Average

2 0.6 0.7 0.7 0.67
5 2.0 2.1 2.0 2.05

10 4.3 4.0 4.2 4.16

compensate. Since we merge the robot frame and the line
frame in that example, the pose y and θ poses of the robot
are equivalent to the errors in those axes.

Fig. 11. Distance and orientation error from simulation. The controller was
robust enough to bring the vehicle back on the correct path in this instance.

B. Deceleration

We did deceleration test using IARRC’s safety qualifica-
tion protocol (section Autonomy).

1) Drive at xm/s for 10m in a straight line.
2) Release the dead man’s switch (see section II-B.2)

when the vehicle arrives at the 10m mark.
3) Wait for the vehicle to stop.
4) Measure the distance between the 10m mark and the

front wheel of the vehicle.
We performed tests at x = 2m/s (as stated in the IARRC

rules), but also at speeds of x = 5m/s and x = 10m/s. For
each speed, we did three trials. Table I presents the results.

C. Drag race

At the time of writing, we did some preliminary tests
with our drag race software. The results can be seen
at https://www.youtube.com/watch?v=bUVCU9WQ97k. Af-
ter this particular test we started investigating possible rea-
sons for the unstable control, including line detection latency
and inappropriate gain parameters.

D. Cone detection

To evaluate the cone detection network, we use the Inter-
section over Union (IoU) metric. It is computed as follows:

IoU =
A ∩B
A ∪B

(6)

where A is the bounding box predicted and B is an
annotated ground truth. We consider a prediction positive
if the IoU metric is over 0.5.

https://www.youtube.com/watch?v=bUVCU9WQ97k 


For now, since we have very few annotated data, we
evaluated the network on the training set only which contains
312 images. We obtain a precision of 88.5%. Note that we
would not benefit from splitting this dataset into a training
set and a validation set since all images are from the same
environment.

We also run the network on the Jetson TX2. We achieve
a detection rate of 15 FPS.

These results are only preliminary. We currently do not
use the cone detection network for the drag race module
as we found the line following method to be sufficient. For
future work, we will integrate the cone detection to the circuit
module. Until then, we need a bigger data set to improve
generalization to unseen environment.

Figure 12 shows qualitative results of the cone detection
network on a training image.

Fig. 12. Qualitative result of the cone detection network on a video.

VI. CONCLUSION AND FUTURE WORK

This year was filled with challenges for VAUL. We had
to create our vehicle from scratch as well as secure the
position of our project with the help of sponsors and faculty
representatives. Although we have not achieved as much
as we wanted, because we are not able to compete in the
circuit race, we are still very proud of what has been done
so far. Our participating at IARRC this year will serve
as a strong basis for the next steps. Using the experience
from this year’s competition, we intend to refine our vehicle
design and implement new algorithms to make Phantom fully
competitive in a circuit race. One of our priorities will be
to implement a planning algorithm to navigate a circuit race
using the cone detection software we have already developed.
This planning algorithm will have to implement collision
avoidance strategies using our sonar sensors. One of the
requirements for the planning algorithm is to develop an
explicit roadway detection. Finally, we also want to improve
the physical design of Phantom to make it safer to drive and
easier to experiment with. With the ever so strong enthusiasm
of our student members, we intend to tackle these challenges
head on. Stay tuned!

REFERENCES

[1] Gazebo simulation. URL: http://gazebosim.org/.

[2] Andrew G. Howard et al. “MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applica-
tions”. In: CoRR abs/1704.04861 (2017). arXiv: 1704.
04861. URL: http://arxiv.org/abs/1704.04861.

[3] Jonathan Huang et al. “Speed/accuracy trade-offs for
modern convolutional object detectors”. In: CoRR
abs/1611.10012 (2016). arXiv: 1611.10012. URL: http:
//arxiv.org/abs/1611.10012.

[4] Tsung-Yi Lin et al. “Microsoft COCO: Common Ob-
jects in Context”. In: CoRR abs/1405.0312 (2014).
arXiv: 1405.0312. URL: http://arxiv.org/abs/1405.0312.

[5] Wei Liu et al. “SSD: Single Shot MultiBox Detector”.
In: CoRR abs/1512.02325 (2015). arXiv: 1512.02325.
URL: http://arxiv.org/abs/1512.02325.

[6] ROS Documentation. URL: http://wiki.ros.org/.
[7] Thrun Sebastian et al. “Stanley: The robot that won

the DARPA Grand Challenge”. In: Journal of Field
Robotics 23.9 (), pp. 661–692. DOI: 10.1002/rob.20147.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
rob.20147. URL: https:/ /onlinelibrary.wiley.com/doi/
abs/10.1002/rob.20147.

[8] Jarrod M Snider et al. “Automatic steering methods
for autonomous automobile path tracking”. In: Robotics
Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08
(2009).

http://gazebosim.org/
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
http://wiki.ros.org/
http://dx.doi.org/10.1002/rob.20147
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20147
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20147
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20147
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20147

	Introduction
	Hardware design
	In a nutshell
	Security systems
	Mechanical E-Stop
	Wireless E-Stop
	Maximum speed limitation

	Sensors
	Camera
	Odometry
	Sonar range sensor
	IMU

	Monitoring
	Computer systems
	Networking

	Software design
	ROS Nodes
	Gazebo simulation
	Remote control

	Meeting the 5 IARRC challenges
	High-speed vehicle localization
	Line detection
	Cone detection
	Cone measurement
	Odometry

	High-speed vehicle control
	Low-level control
	High-level control

	Stop light and roadway detection
	Traffic light detection
	Finish line detection


	Experiments
	Simulation
	Deceleration
	Drag race
	Cone detection

	Conclusion and future work

