
Page 1 of 6 

WE Bots Project CAR 
Competative Autonomus Racer 

Darryl Murray, Shawn Wiegers, Colton Nicotera, Patrick Egan, Elizabeth Hollander, Andrew Simon, Vaughan Murphy 

Engineering Department. The University of Western Ontario 

London, Canada 

webots@eng.uwo.ca 

 

I. INTRODUCTION  

Project CAR (Competitive Autonomous Racer) is an 

autonomous RC-sized car developed by the WE Bots robotics 

club at The University of Western Ontario. This project is the 

result of a team of students working outside of school hours. 

Project CAR is composed of several teams, each team building 

a component of the car and working together to integrate all 

components into this year’s competition submission.  

This year’s submission focused on safety, modularity, 

and performance. Key challenges addressed include: 

 High-speed vehicle localization 

 High-speed vehicle control (acceleration and 

braking) on different surfaces 

 Stoplight and roadway detection 

 Collision avoidance with static objects along 

boundaries of course 

 Collision avoidance with other competing robots 

The result of these efforts is a fully autonomous 

vehicle capable of navigating a racecourse, avoiding other 

vehicles, and responding to traffic lights. 

II. HIGH-LEVEL DESIGN 

Project CAR is composed of six different systems. 

Each system provides specific functions that power the racer. 

Motor control powers our racer. Its main responsibility 

is to provide controlled vehicle acceleration, braking, and 

steering of the chassis propulsion hardware under varying 

surface conditions. As well, it is responsible for preventing 

unsafe maneuvers, and stopping the car in the event of danger. 

The sensor array is the danger detection and the first 

half of the localization system. The array and its controller is 

responsible for collecting and processing the raw sensor data 

into usable measurements for motor control and the navigation 

algorithms, and warning of upcoming obstacles. 

Computer Vision and Navigation forms the 

intelligence of the vehicle, and the second half of the 

localization system. It is responsible for determining the 

location of the car, navigating the roadway, and intelligently 

avoiding both static and dynamic obstacles. As well, it is 

responsible for the interpretation of traffic lights. 

The communications backbone is core of the car. It is 

responsible for routing information quickly and reliably 

between the appropriate components – both on and off the car. 

In addition, the communications backbone is responsible for 

monitoring the health of all subsystems. 

The electrical system powers all onboard components. 

It is responsible for the safe power distribution to all of the car’s 

components, as well as the monitoring and protection of the 

car’s batteries. In addition, the electrical system is responsible 

for powering-down the vehicle in the event of an emergency. 

The chassis forms the substrate of the car. It is 

responsible for providing high-acceleration propulsion, wide-

angle steering, and high traction. In addition, the chassis is 

securely holding all of the preceding car components, and 

protecting them from damage. 

All systems have dedicated processors, and are 

separated by standardized connections and APIs, to enable 

rapid iteration and testing of each component individually. In 

addition, this modularity allows system failures to be contained 

to its respective system, enabling the remaining components to 

respond to the situation and ensure overall safety. 



Page 2 of 6 

III. CHASSIS DESIGN AND HARDWARE 

The chassis was made of two distinct sections: a 

purchased base and a manufactured frame. This combination of 

parts allows for a unique design that provides both reliability 

and customized functionality. 

The base comes from an RC car – included in the RC 

base is a suspension system, steering system, and a mechanical 

drivetrain. Professionally manufactured systems such as these 

will allow the car to 

maintain control and 

traction at high speeds. 

The steering system is 

an Ackermann linkage 

that allows the steering 

wheels to be at 

different angles. This allows for true circular steering. Along 

with this, the differentials of the mechanical drivetrain provide 

more power to the outer wheels to allow for a faster turn. The 

power for the wheels comes from a single 2200kV brushless 

DC motor that provides 4-wheel drive through the drivetrain. 

Finally, the suspension system contains individual springs and 

dampers for each wheel allowing each wheel to maintain 

contact with the ground over rough terrain. 

The manufactured frame on top of the RC car base is 

constructed from bent aluminum sheet metal. Aluminum allows 

the added frame to be light, while providing safety and 

structural rigidity. This frame provides additional places to 

mount components within the car, along with additional safety 

measures to protect the car. These safety components include 

bumpers around the car, metal housing around the battery to 

protect it from impact, and compartments within the car to 

protect the other systems from the mechanical components. 

IV. VEHICLE CONTROL AND SURFACE COMPENSATION 

Both the driving motor and the steering motor are 

controlled through a dedicated microcontroller, which is 

receiving data from the other controllers in the robot. The 

dsPIC33FJ128MC802 (PIC) was chosen for this task because it 

has two pulse width modulation (PWM) modules to control the 

two motors, it has a CAN module to communicate with the 

other microcontrollers, and it has sufficient memory space. 

In order to control braking, the microcontroller only 

uses one intensity. That is to say, the brakes are either on - at 

full - or off. This is due to the most-likely use cases of the 

brakes: in an emergency stop, and at the end of a race. For the 

emergency stop, full brake application is necessary in order to 

stop as soon as possible. Meanwhile, when the race is finished, 

the vehicle should stop soon after - applying full brakes will not 

have negative consequences. Lastly, having only one intensity 

results in a simpler design, which is less prone to errors. 

In order to ensure high-speed vehicle control, 

Proportional Integral Derivative (PID) control is used in both 

the motor speed and the steering angle. Feedback comes from 

the sensor data, and the navigation algorithm sets the target 

speed and angle. The PID response will aim to be over-damped, 

set as close as possible to critically-damped. 

The PID controller was tested on multiple different 

surfaces. The test conditions are designed to handle all use 

cases: no load (on a mount), indoor 

flooring, and outdoor pavement in 

dry conditions. After testing, PID 

values were optimized for each test 

condition. Additionally, the PIC 

checks the road surface (friction) 

and the requested angle/speed 

combination to make sure the 

values will not cause the robot to tip or roll over. In the event 

of a problematic angle/speed request, the steering angle is 

prioritized over the speed. The robot may move slower, but will 

still travel in the desired direction. This will assist other systems 

in collision avoidance. 

A model of the motor control was created in Matlab’s 

Simulink add-on to test and anticipate the robot’s response. A 

first-order linear model was assumed to provide a starting point 

in experimental analysis. The time constant (𝜏) was derived by 

testing the motor’s time response to a step input, and measuring 

 
Figure 2 – Drive Motor 

 
Figure 1 – Drive System Steering  



Page 3 of 6 

the time at 63% of full response. To get a critically-damped 

response, the PID constants was tuned in Simulink. 

V. HALL-EFFECT ENCODERS 

Incremental encoders are installed in all four wheels 

of the car. By lining the inside of the wheels with magnetic 

strips and placing a hall-effect sensor in the hub of the wheel, 

the car can determine the rate of revolution of the wheels by 

detecting the change in magnetic polarity along the magnetic 

strips as they revolve with the wheels. This was done with an 

A1230 hall-effect sensor, and the raw data was processed and 

interpreted by an Arduino Mega 2560. After interpretation, the 

information was sent over the CAN network to the motor 

system for PID control and navigation systems. 

VI. POWER DISTRIBUTION AND CUTOFF 

A Rhino 4000 mAh 6-cell lithium polymer battery 

(Figure 3) powers Project CAR. This battery has a high power 

density, allowing long 

runtimes without 

excessive weight. A 

custom low power 

monitoring and shutdown 

circuit, controlled by a 

PIC16F917, monitors the 

battery. Each cell is 

checked to ensure that the voltage across each cell is within the 

recommended operating voltage of 3V – 4.2V. The circuit also 

tracks the total current supplied by the battery to ensure that it 

is less than 100A – the maximum recommended discharge 

rating. Readings are sent to a mobile app via the CAN network. 

To ensure that 

the monitoring system is 

low power, a switchable 

voltage divider was 

implemented (Figure 4). 

This allows the circuit to 

lower the cell voltage to 

a level that the controller 

can measure, while only consuming power when a 

measurement is in-progress. 

If a monitored value is outside the acceptable range, 

the controller disconnects the battery from the car by pulling up 

the MOSFET gate in the 

switching circuitry (Figure 

5) to prevent further battery 

discharge. As a convenience, 

the switching circuitry also 

supports a power-on push 

button to connect the battery 

for easy use. 

VII. COMMUNICATIONS AND SYSTEM HEALTH 

The CAR is composed of multiple discrete 

microcontrollers, each in control of a separate system within the 

CAR. As the needs of these systems are widely varying (i.e. 

certain systems require lower latency, others require higher 

processing power) almost all individual systems are coded in 

different programming languages and environments. Due to 

this, a standard communications protocol would be required. 

Several were considered, but CAN stood out, as it is 

decentralized, reducing the possibility of one microcontroller 

being overwhelmed with requests. 

A major goal for this year was to ensure the reliability 

and the safety of the car’s communications system. The CAN 

protocol inherently provides bit checking, and the nature of the 

signal (two wires, initially both at 2.5V, but one pushed to 0V 

and the other pushed to 5V) provides protection against 

electrical interference. Satisfied with the hardware, the next 

step was to focus on software reliability. Heartbeat signals are 

sent out periodically to each microcontroller, ensuring that all 

systems remain both connected to the car and able to respond 

in a timely manner. A rolling average of these heartbeat 

response times is recorded, with the car entering an emergency 

stop mode if any one subsystem fails. The same applies to the 

Bluetooth connection between the mobile E-Stop application 

and the car. 

 
Figure 3 – Rhino 4000mAh 6-cell 

lithium polymer battery  

 
Figure 4 – Switching Voltage Divider  

 
Figure 5 – Switching Circuitry 



Page 4 of 6 

VIII. STATIC AND DYNAMIC COLLISION SENSORS 

In order to avoid obstacles, ultrasonic proximity 

sensors were arrayed around the perimeter of the car. A total of 

eight HCSR04 ultrasonic sensors were used to detect oncoming 

obstacles from all directions by situating two at each corner, 

facing perpendicularly from each other in alignment with the 

chassis walls. By sending out sonic waves and timing their 

flight time when rebounding from an object, the ultrasonic 

sensors determine how close obstacles are. The sensor data is 

interpreted by an Arduino Mega 2560, and sent over the CAN 

network to the navigation system for navigating around the 

detected obstacle. 

IX. VEHICLE LOCALIZATION SENSORS 

Vehicle localization was accomplished using a variety 

of sensors to gather absolute and relative position data. The 

inertial measurement unit (IMU) and GPS were used in tandem 

to localize and assist with navigation in the car. Each sensor 

handled its own data collection, with their data interpreted by 

an Arduino Mega 2560. The IMU – a MPU 6050 – fed roll, 

pitch, and yaw data to 

the Arduino over I2C, 

which was then passed 

to the motor control 

and navigation systems 

using the CAN 

network. The GPS – a 

NEO6MV2 – similarly 

fed longitudinal and 

latitudinal information to the Arduino over an I2C connection, 

before being broadcast over the CAN network. 

To determine the reliability of the GPS measurements 

for use in navigation, the GPS module was tested outdoors to 

measure the margin of error. It was found that the GPS’ margin 

of error was too large to be used as the sole source of position 

data. The GPS data currently is used as a reference to notice 

gross errors in the car’s localization, while the IMU data is used 

to assist in estimating the car’s new location from previously 

determined positions. 

In order to avoid leaving the track area, eight LM393 

ambient light sensing photoresistors were used to interpret 

markings on the course. Arrayed in the same manner as the 

ultrasonic sensors, but pointed at the ground, the photoresistors 

change resistance based on the light reflecting off the pavement 

the car is running over. Because different colours reflect 

varying intensities of light, by measuring the voltage across the 

photoresistor, one can determine whether there are lines painted 

on the pavement, and use this knowledge to steer the car to 

remain between the course lines. All data interpretation for 

these devices was done through an Arduino Mega 2560, and 

was relayed using the CAN network to the navigation system. 

X. VISION SYSTEM HARDWARE 

In this iteration of the Project CAR vision system, the 

hardware consisted of the Nvidia Jetson TX1, a Connect Tech 

Orbitty carrier board for the Jetson, and a Stereolabs ZED 

camera. The Nvidia Jetson TX1 provides a powerful embedded 

development platform, which is used to run the computer vision 

system in its entirety. The Jetson also allows for optimization 

of the computer vision algorithms through parallel processing 

using CUDA. The Orbitty carrier board reduced the footprint of 

the Jetson from a mITX motherboard to roughly a credit card, 

while still maintaining the necessary IO interface options. The 

ZED camera introduces a cost-efficient stereo vision camera 

with a pre-built SDK featuring camera calibration and passive 

depth mapping functionality, which is crucial to the navigation 

algorithms. 

XI. TRAFFIC LIGHT DETECTION 

Traffic light detection takes advantage of the change 

in brightness in the image as the lights transition. In detection, 

two images are subtracted from each other, giving an image of 

the differences between them. A low-pass filter removes noise, 

and an OpenCV circle detector looks for the bright circle of the 

traffic lights as their intensities change. A detected traffic light 

signal is then sent into the ROS network to start the configured 

navigation algorithm. 

Figure 6 – IMU/GPS Development 

Setup 



Page 5 of 6 

XII. CIRCUIT RACE NAVIGATION SYSTEM 

The circuit-race navigation system has two 

components – line-based navigation, and pylon-based 

navigation. Line detection takes a simplistic approach to 

determining steering vectors and throttle values by following 

the right guiding line on the road. This is achieved by first 

retrieving pre-processed image frames and depth mapped 

frames from the ROS network. Each frame is then split into a 

set number of evenly distributed rows where each row is used 

to find a tangent line. Each tangent line is combined with the 

stereo camera depth map to determine the 3D real world points 

desired for navigating to. Next, these points are used to 

calculate a series of vectors, which are weighted and finally 

combined into a single navigation vector. 

If the line-based navigation system fails to determine 

a navigation vector, the circuit race navigation will resort to 

pylon-based navigation. Since pylons are irregularly shaped 

objects and are not continuous like lines are, the problem of 

steering a car through them autonomously required a creative 

solution. To solve this problem, an algorithm was laid out in 

multiple steps. The first step is detecting the pylons in the 

image. To do this, the image was pre-processed, and the colour 

orange was filtered out to isolate the pylons. Once the pylons 

were isolated in the image, the approximate centers of the 

pylons were retrieved. The second step is to track the centers of 

the pylons as the car moves through them. Because detecting 

pylons is computationally expensive, it was decided that the 

pylons would be tracked using a tracking algorithm as they 

moved, and the pylons would only be re-detected occasionally. 

The third step is to form the steering vector. The stereo camera 

makes it possible to find the location of each pylon in 3D space. 

By forming a vector joining two pylons on the same side of the 

course, a steering vector could be obtained by projecting this 

vector on the ground plane. Finally, a throttle value was created 

by the sharpness of the steering vector. If the turn is sharper, the 

throttle value is decreased. 

At this point, sensor data is used to make course and 

throttle adjustments, such as decreasing the throttle in response 

to an impending collision alert. This adjusted vector is then 

passed to the ROS network to be sent to the motor system via 

the CAN network. 

XIII. DRAG RACE NAVIGATION SYSTEM 

When the traffic light detector has detected the start of 

the drag race, the drag race navigation system instructs the 

motor system to proceed. GPS readings, IMU acceleration 

readings, and the accumulated Hall Effect sensor distance 

(based on the 60m known distance) are used to approximate 

when the car is approaching the end of the drag race, while IMU 

readings and ultrasonic collision detection is used to make 

course corrections to counteract car course drift. 

When approaching the finish line, by using the known 

RGB value of magenta and tuning the individual values, a filter 

was determined. This filter is used to separate the magenta lines 

from the background and reduce noise when checking for 

magenta inside the region of interest. The throttle is reduced to 

zero when the magenta of the finish line is detected and then 

lost under the car. Ultrasonics are also used to apply the brakes 

before hitting the end barriers, as a fail-safe. 

XIV. SAFETY AND TESTING  

Project CAR uses a Bluetooth module connected to the 

communications microcontroller for emergency stop control, 

navigation mode selection, and the collection of diagnostic data 

via the Bluetooth-connected Android app. For redundancy, in 

addition to the communications heartbeat checks, an emergency 

stop button is hardwired into the power system in case the 

wireless E-Stop fails. In addition, both the power and motor 

systems are programmed to respond to emergency stop 

requests, to provide redundant stopping mechanisms should 

one of the systems fail to act. Lastly, both of these safety-

critical systems also track received heartbeat requests from the 

CAN controller, and will shut down if a heartbeat has not been 

received recently. Both of these systems have written this code 

independently from the others, to avoid programming errors 

from crippling both systems’ ability to respond.  



Page 6 of 6 

To test the car reliably, a test rig was built so that the 

car could be run on a tabletop without moving. The test rig 

consists of rollers mounted on a board with wooden L-brackets 

placed at each side of the car (Figure 7). The rollers allow the 

car’s wheels to spin as if it were on the road, while the brackets 

keep the car in place. This has allowed easy testing of the car 

while running in a controlled environment. For larger tests, a 

test track was set up to mimic the conditions of the real race. 

XV. SUMMARY 

With distributed processing as our guiding principle, 

Project CAR has been working all year on this year’s IARRC 

submission. This submission is the result of a team of students 

working outside of school hours to make each year a better year, 

and every new car iteration a better car. This year’s submission 

focused on improving our safety, modularity, and performance, 

while getting an amazing learning opportunity for the WE Bots 

Project CAR team beyond the classroom. Designing systems 

from scratch offers a unique learning experience to everyone 

involved. We at WE Bots hope to continue and improve on the 

tradition of a modular, distributed processing system and 

excellent learning opportunities in the years to come.

 

 
Figure 7 – Laboratory Test Fixture  


